Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-16x^{2}=-98
Subtract 98 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-98}{-16}
Divide both sides by -16.
x^{2}=\frac{49}{8}
Reduce the fraction \frac{-98}{-16} to lowest terms by extracting and canceling out -2.
x=\frac{7\sqrt{2}}{4} x=-\frac{7\sqrt{2}}{4}
Take the square root of both sides of the equation.
-16x^{2}+98=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-16\right)\times 98}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 0 for b, and 98 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-16\right)\times 98}}{2\left(-16\right)}
Square 0.
x=\frac{0±\sqrt{64\times 98}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{0±\sqrt{6272}}{2\left(-16\right)}
Multiply 64 times 98.
x=\frac{0±56\sqrt{2}}{2\left(-16\right)}
Take the square root of 6272.
x=\frac{0±56\sqrt{2}}{-32}
Multiply 2 times -16.
x=-\frac{7\sqrt{2}}{4}
Now solve the equation x=\frac{0±56\sqrt{2}}{-32} when ± is plus.
x=\frac{7\sqrt{2}}{4}
Now solve the equation x=\frac{0±56\sqrt{2}}{-32} when ± is minus.
x=-\frac{7\sqrt{2}}{4} x=\frac{7\sqrt{2}}{4}
The equation is now solved.