Solve for x (complex solution)
x=\frac{\sqrt{14}i}{2}+2\approx 2+1.870828693i
x=-\frac{\sqrt{14}i}{2}+2\approx 2-1.870828693i
Graph
Share
Copied to clipboard
-16x^{2}+64x-60=60
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-16x^{2}+64x-60-60=60-60
Subtract 60 from both sides of the equation.
-16x^{2}+64x-60-60=0
Subtracting 60 from itself leaves 0.
-16x^{2}+64x-120=0
Subtract 60 from -60.
x=\frac{-64±\sqrt{64^{2}-4\left(-16\right)\left(-120\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 64 for b, and -120 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-64±\sqrt{4096-4\left(-16\right)\left(-120\right)}}{2\left(-16\right)}
Square 64.
x=\frac{-64±\sqrt{4096+64\left(-120\right)}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{-64±\sqrt{4096-7680}}{2\left(-16\right)}
Multiply 64 times -120.
x=\frac{-64±\sqrt{-3584}}{2\left(-16\right)}
Add 4096 to -7680.
x=\frac{-64±16\sqrt{14}i}{2\left(-16\right)}
Take the square root of -3584.
x=\frac{-64±16\sqrt{14}i}{-32}
Multiply 2 times -16.
x=\frac{-64+16\sqrt{14}i}{-32}
Now solve the equation x=\frac{-64±16\sqrt{14}i}{-32} when ± is plus. Add -64 to 16i\sqrt{14}.
x=-\frac{\sqrt{14}i}{2}+2
Divide -64+16i\sqrt{14} by -32.
x=\frac{-16\sqrt{14}i-64}{-32}
Now solve the equation x=\frac{-64±16\sqrt{14}i}{-32} when ± is minus. Subtract 16i\sqrt{14} from -64.
x=\frac{\sqrt{14}i}{2}+2
Divide -64-16i\sqrt{14} by -32.
x=-\frac{\sqrt{14}i}{2}+2 x=\frac{\sqrt{14}i}{2}+2
The equation is now solved.
-16x^{2}+64x-60=60
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-16x^{2}+64x-60-\left(-60\right)=60-\left(-60\right)
Add 60 to both sides of the equation.
-16x^{2}+64x=60-\left(-60\right)
Subtracting -60 from itself leaves 0.
-16x^{2}+64x=120
Subtract -60 from 60.
\frac{-16x^{2}+64x}{-16}=\frac{120}{-16}
Divide both sides by -16.
x^{2}+\frac{64}{-16}x=\frac{120}{-16}
Dividing by -16 undoes the multiplication by -16.
x^{2}-4x=\frac{120}{-16}
Divide 64 by -16.
x^{2}-4x=-\frac{15}{2}
Reduce the fraction \frac{120}{-16} to lowest terms by extracting and canceling out 8.
x^{2}-4x+\left(-2\right)^{2}=-\frac{15}{2}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-\frac{15}{2}+4
Square -2.
x^{2}-4x+4=-\frac{7}{2}
Add -\frac{15}{2} to 4.
\left(x-2\right)^{2}=-\frac{7}{2}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-\frac{7}{2}}
Take the square root of both sides of the equation.
x-2=\frac{\sqrt{14}i}{2} x-2=-\frac{\sqrt{14}i}{2}
Simplify.
x=\frac{\sqrt{14}i}{2}+2 x=-\frac{\sqrt{14}i}{2}+2
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}