Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-16x^{2}+220x+138=883
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-16x^{2}+220x+138-883=883-883
Subtract 883 from both sides of the equation.
-16x^{2}+220x+138-883=0
Subtracting 883 from itself leaves 0.
-16x^{2}+220x-745=0
Subtract 883 from 138.
x=\frac{-220±\sqrt{220^{2}-4\left(-16\right)\left(-745\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 220 for b, and -745 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-220±\sqrt{48400-4\left(-16\right)\left(-745\right)}}{2\left(-16\right)}
Square 220.
x=\frac{-220±\sqrt{48400+64\left(-745\right)}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{-220±\sqrt{48400-47680}}{2\left(-16\right)}
Multiply 64 times -745.
x=\frac{-220±\sqrt{720}}{2\left(-16\right)}
Add 48400 to -47680.
x=\frac{-220±12\sqrt{5}}{2\left(-16\right)}
Take the square root of 720.
x=\frac{-220±12\sqrt{5}}{-32}
Multiply 2 times -16.
x=\frac{12\sqrt{5}-220}{-32}
Now solve the equation x=\frac{-220±12\sqrt{5}}{-32} when ± is plus. Add -220 to 12\sqrt{5}.
x=\frac{55-3\sqrt{5}}{8}
Divide -220+12\sqrt{5} by -32.
x=\frac{-12\sqrt{5}-220}{-32}
Now solve the equation x=\frac{-220±12\sqrt{5}}{-32} when ± is minus. Subtract 12\sqrt{5} from -220.
x=\frac{3\sqrt{5}+55}{8}
Divide -220-12\sqrt{5} by -32.
x=\frac{55-3\sqrt{5}}{8} x=\frac{3\sqrt{5}+55}{8}
The equation is now solved.
-16x^{2}+220x+138=883
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-16x^{2}+220x+138-138=883-138
Subtract 138 from both sides of the equation.
-16x^{2}+220x=883-138
Subtracting 138 from itself leaves 0.
-16x^{2}+220x=745
Subtract 138 from 883.
\frac{-16x^{2}+220x}{-16}=\frac{745}{-16}
Divide both sides by -16.
x^{2}+\frac{220}{-16}x=\frac{745}{-16}
Dividing by -16 undoes the multiplication by -16.
x^{2}-\frac{55}{4}x=\frac{745}{-16}
Reduce the fraction \frac{220}{-16} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{55}{4}x=-\frac{745}{16}
Divide 745 by -16.
x^{2}-\frac{55}{4}x+\left(-\frac{55}{8}\right)^{2}=-\frac{745}{16}+\left(-\frac{55}{8}\right)^{2}
Divide -\frac{55}{4}, the coefficient of the x term, by 2 to get -\frac{55}{8}. Then add the square of -\frac{55}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{55}{4}x+\frac{3025}{64}=-\frac{745}{16}+\frac{3025}{64}
Square -\frac{55}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{55}{4}x+\frac{3025}{64}=\frac{45}{64}
Add -\frac{745}{16} to \frac{3025}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{55}{8}\right)^{2}=\frac{45}{64}
Factor x^{2}-\frac{55}{4}x+\frac{3025}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{55}{8}\right)^{2}}=\sqrt{\frac{45}{64}}
Take the square root of both sides of the equation.
x-\frac{55}{8}=\frac{3\sqrt{5}}{8} x-\frac{55}{8}=-\frac{3\sqrt{5}}{8}
Simplify.
x=\frac{3\sqrt{5}+55}{8} x=\frac{55-3\sqrt{5}}{8}
Add \frac{55}{8} to both sides of the equation.