Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

16\left(-x^{2}+8x\right)
Factor out 16.
x\left(-x+8\right)
Consider -x^{2}+8x. Factor out x.
16x\left(-x+8\right)
Rewrite the complete factored expression.
-16x^{2}+128x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-128±\sqrt{128^{2}}}{2\left(-16\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-128±128}{2\left(-16\right)}
Take the square root of 128^{2}.
x=\frac{-128±128}{-32}
Multiply 2 times -16.
x=\frac{0}{-32}
Now solve the equation x=\frac{-128±128}{-32} when ± is plus. Add -128 to 128.
x=0
Divide 0 by -32.
x=-\frac{256}{-32}
Now solve the equation x=\frac{-128±128}{-32} when ± is minus. Subtract 128 from -128.
x=8
Divide -256 by -32.
-16x^{2}+128x=-16x\left(x-8\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 8 for x_{2}.