Solve for t
t = \frac{7}{2} = 3\frac{1}{2} = 3.5
t=0
Share
Copied to clipboard
t\left(-16t+56\right)=0
Factor out t.
t=0 t=\frac{7}{2}
To find equation solutions, solve t=0 and -16t+56=0.
-16t^{2}+56t=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-56±\sqrt{56^{2}}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 56 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-56±56}{2\left(-16\right)}
Take the square root of 56^{2}.
t=\frac{-56±56}{-32}
Multiply 2 times -16.
t=\frac{0}{-32}
Now solve the equation t=\frac{-56±56}{-32} when ± is plus. Add -56 to 56.
t=0
Divide 0 by -32.
t=-\frac{112}{-32}
Now solve the equation t=\frac{-56±56}{-32} when ± is minus. Subtract 56 from -56.
t=\frac{7}{2}
Reduce the fraction \frac{-112}{-32} to lowest terms by extracting and canceling out 16.
t=0 t=\frac{7}{2}
The equation is now solved.
-16t^{2}+56t=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-16t^{2}+56t}{-16}=\frac{0}{-16}
Divide both sides by -16.
t^{2}+\frac{56}{-16}t=\frac{0}{-16}
Dividing by -16 undoes the multiplication by -16.
t^{2}-\frac{7}{2}t=\frac{0}{-16}
Reduce the fraction \frac{56}{-16} to lowest terms by extracting and canceling out 8.
t^{2}-\frac{7}{2}t=0
Divide 0 by -16.
t^{2}-\frac{7}{2}t+\left(-\frac{7}{4}\right)^{2}=\left(-\frac{7}{4}\right)^{2}
Divide -\frac{7}{2}, the coefficient of the x term, by 2 to get -\frac{7}{4}. Then add the square of -\frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{7}{2}t+\frac{49}{16}=\frac{49}{16}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
\left(t-\frac{7}{4}\right)^{2}=\frac{49}{16}
Factor t^{2}-\frac{7}{2}t+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{7}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Take the square root of both sides of the equation.
t-\frac{7}{4}=\frac{7}{4} t-\frac{7}{4}=-\frac{7}{4}
Simplify.
t=\frac{7}{2} t=0
Add \frac{7}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}