Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-16t^{2}+112t+30=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-112±\sqrt{112^{2}-4\left(-16\right)\times 30}}{2\left(-16\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-112±\sqrt{12544-4\left(-16\right)\times 30}}{2\left(-16\right)}
Square 112.
t=\frac{-112±\sqrt{12544+64\times 30}}{2\left(-16\right)}
Multiply -4 times -16.
t=\frac{-112±\sqrt{12544+1920}}{2\left(-16\right)}
Multiply 64 times 30.
t=\frac{-112±\sqrt{14464}}{2\left(-16\right)}
Add 12544 to 1920.
t=\frac{-112±8\sqrt{226}}{2\left(-16\right)}
Take the square root of 14464.
t=\frac{-112±8\sqrt{226}}{-32}
Multiply 2 times -16.
t=\frac{8\sqrt{226}-112}{-32}
Now solve the equation t=\frac{-112±8\sqrt{226}}{-32} when ± is plus. Add -112 to 8\sqrt{226}.
t=-\frac{\sqrt{226}}{4}+\frac{7}{2}
Divide -112+8\sqrt{226} by -32.
t=\frac{-8\sqrt{226}-112}{-32}
Now solve the equation t=\frac{-112±8\sqrt{226}}{-32} when ± is minus. Subtract 8\sqrt{226} from -112.
t=\frac{\sqrt{226}}{4}+\frac{7}{2}
Divide -112-8\sqrt{226} by -32.
-16t^{2}+112t+30=-16\left(t-\left(-\frac{\sqrt{226}}{4}+\frac{7}{2}\right)\right)\left(t-\left(\frac{\sqrt{226}}{4}+\frac{7}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{7}{2}-\frac{\sqrt{226}}{4} for x_{1} and \frac{7}{2}+\frac{\sqrt{226}}{4} for x_{2}.