Solve for x (complex solution)
x=\frac{1+3\sqrt{7}i}{32}\approx 0.03125+0.248039185i
x=\frac{-3\sqrt{7}i+1}{32}\approx 0.03125-0.248039185i
Graph
Share
Copied to clipboard
-144x^{2}+9x-9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9±\sqrt{9^{2}-4\left(-144\right)\left(-9\right)}}{2\left(-144\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -144 for a, 9 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\left(-144\right)\left(-9\right)}}{2\left(-144\right)}
Square 9.
x=\frac{-9±\sqrt{81+576\left(-9\right)}}{2\left(-144\right)}
Multiply -4 times -144.
x=\frac{-9±\sqrt{81-5184}}{2\left(-144\right)}
Multiply 576 times -9.
x=\frac{-9±\sqrt{-5103}}{2\left(-144\right)}
Add 81 to -5184.
x=\frac{-9±27\sqrt{7}i}{2\left(-144\right)}
Take the square root of -5103.
x=\frac{-9±27\sqrt{7}i}{-288}
Multiply 2 times -144.
x=\frac{-9+27\sqrt{7}i}{-288}
Now solve the equation x=\frac{-9±27\sqrt{7}i}{-288} when ± is plus. Add -9 to 27i\sqrt{7}.
x=\frac{-3\sqrt{7}i+1}{32}
Divide -9+27i\sqrt{7} by -288.
x=\frac{-27\sqrt{7}i-9}{-288}
Now solve the equation x=\frac{-9±27\sqrt{7}i}{-288} when ± is minus. Subtract 27i\sqrt{7} from -9.
x=\frac{1+3\sqrt{7}i}{32}
Divide -9-27i\sqrt{7} by -288.
x=\frac{-3\sqrt{7}i+1}{32} x=\frac{1+3\sqrt{7}i}{32}
The equation is now solved.
-144x^{2}+9x-9=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-144x^{2}+9x-9-\left(-9\right)=-\left(-9\right)
Add 9 to both sides of the equation.
-144x^{2}+9x=-\left(-9\right)
Subtracting -9 from itself leaves 0.
-144x^{2}+9x=9
Subtract -9 from 0.
\frac{-144x^{2}+9x}{-144}=\frac{9}{-144}
Divide both sides by -144.
x^{2}+\frac{9}{-144}x=\frac{9}{-144}
Dividing by -144 undoes the multiplication by -144.
x^{2}-\frac{1}{16}x=\frac{9}{-144}
Reduce the fraction \frac{9}{-144} to lowest terms by extracting and canceling out 9.
x^{2}-\frac{1}{16}x=-\frac{1}{16}
Reduce the fraction \frac{9}{-144} to lowest terms by extracting and canceling out 9.
x^{2}-\frac{1}{16}x+\left(-\frac{1}{32}\right)^{2}=-\frac{1}{16}+\left(-\frac{1}{32}\right)^{2}
Divide -\frac{1}{16}, the coefficient of the x term, by 2 to get -\frac{1}{32}. Then add the square of -\frac{1}{32} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{16}x+\frac{1}{1024}=-\frac{1}{16}+\frac{1}{1024}
Square -\frac{1}{32} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{16}x+\frac{1}{1024}=-\frac{63}{1024}
Add -\frac{1}{16} to \frac{1}{1024} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{32}\right)^{2}=-\frac{63}{1024}
Factor x^{2}-\frac{1}{16}x+\frac{1}{1024}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{32}\right)^{2}}=\sqrt{-\frac{63}{1024}}
Take the square root of both sides of the equation.
x-\frac{1}{32}=\frac{3\sqrt{7}i}{32} x-\frac{1}{32}=-\frac{3\sqrt{7}i}{32}
Simplify.
x=\frac{1+3\sqrt{7}i}{32} x=\frac{-3\sqrt{7}i+1}{32}
Add \frac{1}{32} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}