Factor
-\left(2x-7\right)\left(7x+2\right)
Evaluate
14+45x-14x^{2}
Graph
Share
Copied to clipboard
a+b=45 ab=-14\times 14=-196
Factor the expression by grouping. First, the expression needs to be rewritten as -14x^{2}+ax+bx+14. To find a and b, set up a system to be solved.
-1,196 -2,98 -4,49 -7,28 -14,14
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -196.
-1+196=195 -2+98=96 -4+49=45 -7+28=21 -14+14=0
Calculate the sum for each pair.
a=49 b=-4
The solution is the pair that gives sum 45.
\left(-14x^{2}+49x\right)+\left(-4x+14\right)
Rewrite -14x^{2}+45x+14 as \left(-14x^{2}+49x\right)+\left(-4x+14\right).
-7x\left(2x-7\right)-2\left(2x-7\right)
Factor out -7x in the first and -2 in the second group.
\left(2x-7\right)\left(-7x-2\right)
Factor out common term 2x-7 by using distributive property.
-14x^{2}+45x+14=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-45±\sqrt{45^{2}-4\left(-14\right)\times 14}}{2\left(-14\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-45±\sqrt{2025-4\left(-14\right)\times 14}}{2\left(-14\right)}
Square 45.
x=\frac{-45±\sqrt{2025+56\times 14}}{2\left(-14\right)}
Multiply -4 times -14.
x=\frac{-45±\sqrt{2025+784}}{2\left(-14\right)}
Multiply 56 times 14.
x=\frac{-45±\sqrt{2809}}{2\left(-14\right)}
Add 2025 to 784.
x=\frac{-45±53}{2\left(-14\right)}
Take the square root of 2809.
x=\frac{-45±53}{-28}
Multiply 2 times -14.
x=\frac{8}{-28}
Now solve the equation x=\frac{-45±53}{-28} when ± is plus. Add -45 to 53.
x=-\frac{2}{7}
Reduce the fraction \frac{8}{-28} to lowest terms by extracting and canceling out 4.
x=-\frac{98}{-28}
Now solve the equation x=\frac{-45±53}{-28} when ± is minus. Subtract 53 from -45.
x=\frac{7}{2}
Reduce the fraction \frac{-98}{-28} to lowest terms by extracting and canceling out 14.
-14x^{2}+45x+14=-14\left(x-\left(-\frac{2}{7}\right)\right)\left(x-\frac{7}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{2}{7} for x_{1} and \frac{7}{2} for x_{2}.
-14x^{2}+45x+14=-14\left(x+\frac{2}{7}\right)\left(x-\frac{7}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-14x^{2}+45x+14=-14\times \frac{-7x-2}{-7}\left(x-\frac{7}{2}\right)
Add \frac{2}{7} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-14x^{2}+45x+14=-14\times \frac{-7x-2}{-7}\times \frac{-2x+7}{-2}
Subtract \frac{7}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-14x^{2}+45x+14=-14\times \frac{\left(-7x-2\right)\left(-2x+7\right)}{-7\left(-2\right)}
Multiply \frac{-7x-2}{-7} times \frac{-2x+7}{-2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-14x^{2}+45x+14=-14\times \frac{\left(-7x-2\right)\left(-2x+7\right)}{14}
Multiply -7 times -2.
-14x^{2}+45x+14=-\left(-7x-2\right)\left(-2x+7\right)
Cancel out 14, the greatest common factor in -14 and 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}