Evaluate
\frac{44}{5}=8.8
Factor
\frac{2 ^ {2} \cdot 11}{5} = 8\frac{4}{5} = 8.8
Share
Copied to clipboard
-12-\frac{9+2}{3}-\frac{13\times 3+2}{3}+\frac{31\times 15+2}{15}-\left(-\frac{10\times 2+1}{2}\right)-\frac{3\times 2+1}{2}
Multiply 3 and 3 to get 9.
-12-\frac{11}{3}-\frac{13\times 3+2}{3}+\frac{31\times 15+2}{15}-\left(-\frac{10\times 2+1}{2}\right)-\frac{3\times 2+1}{2}
Add 9 and 2 to get 11.
-\frac{36}{3}-\frac{11}{3}-\frac{13\times 3+2}{3}+\frac{31\times 15+2}{15}-\left(-\frac{10\times 2+1}{2}\right)-\frac{3\times 2+1}{2}
Convert -12 to fraction -\frac{36}{3}.
\frac{-36-11}{3}-\frac{13\times 3+2}{3}+\frac{31\times 15+2}{15}-\left(-\frac{10\times 2+1}{2}\right)-\frac{3\times 2+1}{2}
Since -\frac{36}{3} and \frac{11}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{47}{3}-\frac{13\times 3+2}{3}+\frac{31\times 15+2}{15}-\left(-\frac{10\times 2+1}{2}\right)-\frac{3\times 2+1}{2}
Subtract 11 from -36 to get -47.
-\frac{47}{3}-\frac{39+2}{3}+\frac{31\times 15+2}{15}-\left(-\frac{10\times 2+1}{2}\right)-\frac{3\times 2+1}{2}
Multiply 13 and 3 to get 39.
-\frac{47}{3}-\frac{41}{3}+\frac{31\times 15+2}{15}-\left(-\frac{10\times 2+1}{2}\right)-\frac{3\times 2+1}{2}
Add 39 and 2 to get 41.
\frac{-47-41}{3}+\frac{31\times 15+2}{15}-\left(-\frac{10\times 2+1}{2}\right)-\frac{3\times 2+1}{2}
Since -\frac{47}{3} and \frac{41}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{88}{3}+\frac{31\times 15+2}{15}-\left(-\frac{10\times 2+1}{2}\right)-\frac{3\times 2+1}{2}
Subtract 41 from -47 to get -88.
-\frac{88}{3}+\frac{465+2}{15}-\left(-\frac{10\times 2+1}{2}\right)-\frac{3\times 2+1}{2}
Multiply 31 and 15 to get 465.
-\frac{88}{3}+\frac{467}{15}-\left(-\frac{10\times 2+1}{2}\right)-\frac{3\times 2+1}{2}
Add 465 and 2 to get 467.
-\frac{440}{15}+\frac{467}{15}-\left(-\frac{10\times 2+1}{2}\right)-\frac{3\times 2+1}{2}
Least common multiple of 3 and 15 is 15. Convert -\frac{88}{3} and \frac{467}{15} to fractions with denominator 15.
\frac{-440+467}{15}-\left(-\frac{10\times 2+1}{2}\right)-\frac{3\times 2+1}{2}
Since -\frac{440}{15} and \frac{467}{15} have the same denominator, add them by adding their numerators.
\frac{27}{15}-\left(-\frac{10\times 2+1}{2}\right)-\frac{3\times 2+1}{2}
Add -440 and 467 to get 27.
\frac{9}{5}-\left(-\frac{10\times 2+1}{2}\right)-\frac{3\times 2+1}{2}
Reduce the fraction \frac{27}{15} to lowest terms by extracting and canceling out 3.
\frac{9}{5}-\left(-\frac{20+1}{2}\right)-\frac{3\times 2+1}{2}
Multiply 10 and 2 to get 20.
\frac{9}{5}-\left(-\frac{21}{2}\right)-\frac{3\times 2+1}{2}
Add 20 and 1 to get 21.
\frac{9}{5}+\frac{21}{2}-\frac{3\times 2+1}{2}
The opposite of -\frac{21}{2} is \frac{21}{2}.
\frac{18}{10}+\frac{105}{10}-\frac{3\times 2+1}{2}
Least common multiple of 5 and 2 is 10. Convert \frac{9}{5} and \frac{21}{2} to fractions with denominator 10.
\frac{18+105}{10}-\frac{3\times 2+1}{2}
Since \frac{18}{10} and \frac{105}{10} have the same denominator, add them by adding their numerators.
\frac{123}{10}-\frac{3\times 2+1}{2}
Add 18 and 105 to get 123.
\frac{123}{10}-\frac{6+1}{2}
Multiply 3 and 2 to get 6.
\frac{123}{10}-\frac{7}{2}
Add 6 and 1 to get 7.
\frac{123}{10}-\frac{35}{10}
Least common multiple of 10 and 2 is 10. Convert \frac{123}{10} and \frac{7}{2} to fractions with denominator 10.
\frac{123-35}{10}
Since \frac{123}{10} and \frac{35}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{88}{10}
Subtract 35 from 123 to get 88.
\frac{44}{5}
Reduce the fraction \frac{88}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}