Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

12\left(-x^{2}-4x-3\right)
Factor out 12.
a+b=-4 ab=-\left(-3\right)=3
Consider -x^{2}-4x-3. Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx-3. To find a and b, set up a system to be solved.
a=-1 b=-3
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(-x^{2}-x\right)+\left(-3x-3\right)
Rewrite -x^{2}-4x-3 as \left(-x^{2}-x\right)+\left(-3x-3\right).
x\left(-x-1\right)+3\left(-x-1\right)
Factor out x in the first and 3 in the second group.
\left(-x-1\right)\left(x+3\right)
Factor out common term -x-1 by using distributive property.
12\left(-x-1\right)\left(x+3\right)
Rewrite the complete factored expression.
-12x^{2}-48x-36=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\left(-12\right)\left(-36\right)}}{2\left(-12\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-48\right)±\sqrt{2304-4\left(-12\right)\left(-36\right)}}{2\left(-12\right)}
Square -48.
x=\frac{-\left(-48\right)±\sqrt{2304+48\left(-36\right)}}{2\left(-12\right)}
Multiply -4 times -12.
x=\frac{-\left(-48\right)±\sqrt{2304-1728}}{2\left(-12\right)}
Multiply 48 times -36.
x=\frac{-\left(-48\right)±\sqrt{576}}{2\left(-12\right)}
Add 2304 to -1728.
x=\frac{-\left(-48\right)±24}{2\left(-12\right)}
Take the square root of 576.
x=\frac{48±24}{2\left(-12\right)}
The opposite of -48 is 48.
x=\frac{48±24}{-24}
Multiply 2 times -12.
x=\frac{72}{-24}
Now solve the equation x=\frac{48±24}{-24} when ± is plus. Add 48 to 24.
x=-3
Divide 72 by -24.
x=\frac{24}{-24}
Now solve the equation x=\frac{48±24}{-24} when ± is minus. Subtract 24 from 48.
x=-1
Divide 24 by -24.
-12x^{2}-48x-36=-12\left(x-\left(-3\right)\right)\left(x-\left(-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -3 for x_{1} and -1 for x_{2}.
-12x^{2}-48x-36=-12\left(x+3\right)\left(x+1\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.