Factor
9\left(4-x\right)\left(13x-1\right)
Evaluate
-117x^{2}+477x-36
Graph
Share
Copied to clipboard
9\left(-13x^{2}+53x-4\right)
Factor out 9.
a+b=53 ab=-13\left(-4\right)=52
Consider -13x^{2}+53x-4. Factor the expression by grouping. First, the expression needs to be rewritten as -13x^{2}+ax+bx-4. To find a and b, set up a system to be solved.
1,52 2,26 4,13
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 52.
1+52=53 2+26=28 4+13=17
Calculate the sum for each pair.
a=52 b=1
The solution is the pair that gives sum 53.
\left(-13x^{2}+52x\right)+\left(x-4\right)
Rewrite -13x^{2}+53x-4 as \left(-13x^{2}+52x\right)+\left(x-4\right).
13x\left(-x+4\right)-\left(-x+4\right)
Factor out 13x in the first and -1 in the second group.
\left(-x+4\right)\left(13x-1\right)
Factor out common term -x+4 by using distributive property.
9\left(-x+4\right)\left(13x-1\right)
Rewrite the complete factored expression.
-117x^{2}+477x-36=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-477±\sqrt{477^{2}-4\left(-117\right)\left(-36\right)}}{2\left(-117\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-477±\sqrt{227529-4\left(-117\right)\left(-36\right)}}{2\left(-117\right)}
Square 477.
x=\frac{-477±\sqrt{227529+468\left(-36\right)}}{2\left(-117\right)}
Multiply -4 times -117.
x=\frac{-477±\sqrt{227529-16848}}{2\left(-117\right)}
Multiply 468 times -36.
x=\frac{-477±\sqrt{210681}}{2\left(-117\right)}
Add 227529 to -16848.
x=\frac{-477±459}{2\left(-117\right)}
Take the square root of 210681.
x=\frac{-477±459}{-234}
Multiply 2 times -117.
x=-\frac{18}{-234}
Now solve the equation x=\frac{-477±459}{-234} when ± is plus. Add -477 to 459.
x=\frac{1}{13}
Reduce the fraction \frac{-18}{-234} to lowest terms by extracting and canceling out 18.
x=-\frac{936}{-234}
Now solve the equation x=\frac{-477±459}{-234} when ± is minus. Subtract 459 from -477.
x=4
Divide -936 by -234.
-117x^{2}+477x-36=-117\left(x-\frac{1}{13}\right)\left(x-4\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{13} for x_{1} and 4 for x_{2}.
-117x^{2}+477x-36=-117\times \frac{-13x+1}{-13}\left(x-4\right)
Subtract \frac{1}{13} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-117x^{2}+477x-36=9\left(-13x+1\right)\left(x-4\right)
Cancel out 13, the greatest common factor in -117 and 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}