Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-11x^{2}+2x=10
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-11x^{2}+2x-10=10-10
Subtract 10 from both sides of the equation.
-11x^{2}+2x-10=0
Subtracting 10 from itself leaves 0.
x=\frac{-2±\sqrt{2^{2}-4\left(-11\right)\left(-10\right)}}{2\left(-11\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -11 for a, 2 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-11\right)\left(-10\right)}}{2\left(-11\right)}
Square 2.
x=\frac{-2±\sqrt{4+44\left(-10\right)}}{2\left(-11\right)}
Multiply -4 times -11.
x=\frac{-2±\sqrt{4-440}}{2\left(-11\right)}
Multiply 44 times -10.
x=\frac{-2±\sqrt{-436}}{2\left(-11\right)}
Add 4 to -440.
x=\frac{-2±2\sqrt{109}i}{2\left(-11\right)}
Take the square root of -436.
x=\frac{-2±2\sqrt{109}i}{-22}
Multiply 2 times -11.
x=\frac{-2+2\sqrt{109}i}{-22}
Now solve the equation x=\frac{-2±2\sqrt{109}i}{-22} when ± is plus. Add -2 to 2i\sqrt{109}.
x=\frac{-\sqrt{109}i+1}{11}
Divide -2+2i\sqrt{109} by -22.
x=\frac{-2\sqrt{109}i-2}{-22}
Now solve the equation x=\frac{-2±2\sqrt{109}i}{-22} when ± is minus. Subtract 2i\sqrt{109} from -2.
x=\frac{1+\sqrt{109}i}{11}
Divide -2-2i\sqrt{109} by -22.
x=\frac{-\sqrt{109}i+1}{11} x=\frac{1+\sqrt{109}i}{11}
The equation is now solved.
-11x^{2}+2x=10
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-11x^{2}+2x}{-11}=\frac{10}{-11}
Divide both sides by -11.
x^{2}+\frac{2}{-11}x=\frac{10}{-11}
Dividing by -11 undoes the multiplication by -11.
x^{2}-\frac{2}{11}x=\frac{10}{-11}
Divide 2 by -11.
x^{2}-\frac{2}{11}x=-\frac{10}{11}
Divide 10 by -11.
x^{2}-\frac{2}{11}x+\left(-\frac{1}{11}\right)^{2}=-\frac{10}{11}+\left(-\frac{1}{11}\right)^{2}
Divide -\frac{2}{11}, the coefficient of the x term, by 2 to get -\frac{1}{11}. Then add the square of -\frac{1}{11} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{11}x+\frac{1}{121}=-\frac{10}{11}+\frac{1}{121}
Square -\frac{1}{11} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{11}x+\frac{1}{121}=-\frac{109}{121}
Add -\frac{10}{11} to \frac{1}{121} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{11}\right)^{2}=-\frac{109}{121}
Factor x^{2}-\frac{2}{11}x+\frac{1}{121}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{11}\right)^{2}}=\sqrt{-\frac{109}{121}}
Take the square root of both sides of the equation.
x-\frac{1}{11}=\frac{\sqrt{109}i}{11} x-\frac{1}{11}=-\frac{\sqrt{109}i}{11}
Simplify.
x=\frac{1+\sqrt{109}i}{11} x=\frac{-\sqrt{109}i+1}{11}
Add \frac{1}{11} to both sides of the equation.