Solve for x (complex solution)
x=\frac{\sqrt{449}i}{250}+\frac{13}{125}\approx 0.104+0.08475848i
x=-\frac{\sqrt{449}i}{250}+\frac{13}{125}\approx 0.104-0.08475848i
Graph
Share
Copied to clipboard
-10000x^{2}+2080x-180=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2080±\sqrt{2080^{2}-4\left(-10000\right)\left(-180\right)}}{2\left(-10000\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10000 for a, 2080 for b, and -180 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2080±\sqrt{4326400-4\left(-10000\right)\left(-180\right)}}{2\left(-10000\right)}
Square 2080.
x=\frac{-2080±\sqrt{4326400+40000\left(-180\right)}}{2\left(-10000\right)}
Multiply -4 times -10000.
x=\frac{-2080±\sqrt{4326400-7200000}}{2\left(-10000\right)}
Multiply 40000 times -180.
x=\frac{-2080±\sqrt{-2873600}}{2\left(-10000\right)}
Add 4326400 to -7200000.
x=\frac{-2080±80\sqrt{449}i}{2\left(-10000\right)}
Take the square root of -2873600.
x=\frac{-2080±80\sqrt{449}i}{-20000}
Multiply 2 times -10000.
x=\frac{-2080+80\sqrt{449}i}{-20000}
Now solve the equation x=\frac{-2080±80\sqrt{449}i}{-20000} when ± is plus. Add -2080 to 80i\sqrt{449}.
x=-\frac{\sqrt{449}i}{250}+\frac{13}{125}
Divide -2080+80i\sqrt{449} by -20000.
x=\frac{-80\sqrt{449}i-2080}{-20000}
Now solve the equation x=\frac{-2080±80\sqrt{449}i}{-20000} when ± is minus. Subtract 80i\sqrt{449} from -2080.
x=\frac{\sqrt{449}i}{250}+\frac{13}{125}
Divide -2080-80i\sqrt{449} by -20000.
x=-\frac{\sqrt{449}i}{250}+\frac{13}{125} x=\frac{\sqrt{449}i}{250}+\frac{13}{125}
The equation is now solved.
-10000x^{2}+2080x-180=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-10000x^{2}+2080x-180-\left(-180\right)=-\left(-180\right)
Add 180 to both sides of the equation.
-10000x^{2}+2080x=-\left(-180\right)
Subtracting -180 from itself leaves 0.
-10000x^{2}+2080x=180
Subtract -180 from 0.
\frac{-10000x^{2}+2080x}{-10000}=\frac{180}{-10000}
Divide both sides by -10000.
x^{2}+\frac{2080}{-10000}x=\frac{180}{-10000}
Dividing by -10000 undoes the multiplication by -10000.
x^{2}-\frac{26}{125}x=\frac{180}{-10000}
Reduce the fraction \frac{2080}{-10000} to lowest terms by extracting and canceling out 80.
x^{2}-\frac{26}{125}x=-\frac{9}{500}
Reduce the fraction \frac{180}{-10000} to lowest terms by extracting and canceling out 20.
x^{2}-\frac{26}{125}x+\left(-\frac{13}{125}\right)^{2}=-\frac{9}{500}+\left(-\frac{13}{125}\right)^{2}
Divide -\frac{26}{125}, the coefficient of the x term, by 2 to get -\frac{13}{125}. Then add the square of -\frac{13}{125} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{26}{125}x+\frac{169}{15625}=-\frac{9}{500}+\frac{169}{15625}
Square -\frac{13}{125} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{26}{125}x+\frac{169}{15625}=-\frac{449}{62500}
Add -\frac{9}{500} to \frac{169}{15625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{125}\right)^{2}=-\frac{449}{62500}
Factor x^{2}-\frac{26}{125}x+\frac{169}{15625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{125}\right)^{2}}=\sqrt{-\frac{449}{62500}}
Take the square root of both sides of the equation.
x-\frac{13}{125}=\frac{\sqrt{449}i}{250} x-\frac{13}{125}=-\frac{\sqrt{449}i}{250}
Simplify.
x=\frac{\sqrt{449}i}{250}+\frac{13}{125} x=-\frac{\sqrt{449}i}{250}+\frac{13}{125}
Add \frac{13}{125} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}