Evaluate
4xy+\frac{49x^{2}}{10}-10
Differentiate w.r.t. x
\frac{49x}{5}+4y
Share
Copied to clipboard
-10+5xy-2.1x^{2}-xy+7x^{2}
Multiply 3 and 0.7 to get 2.1.
-10+4xy-2.1x^{2}+7x^{2}
Combine 5xy and -xy to get 4xy.
-10+4xy+4.9x^{2}
Combine -2.1x^{2} and 7x^{2} to get 4.9x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-10+5xy-2.1x^{2}-xy+7x^{2})
Multiply 3 and 0.7 to get 2.1.
\frac{\mathrm{d}}{\mathrm{d}x}(-10+4xy-2.1x^{2}+7x^{2})
Combine 5xy and -xy to get 4xy.
\frac{\mathrm{d}}{\mathrm{d}x}(-10+4xy+4.9x^{2})
Combine -2.1x^{2} and 7x^{2} to get 4.9x^{2}.
4yx^{1-1}+2\times 4.9x^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
4yx^{0}+2\times 4.9x^{2-1}
Subtract 1 from 1.
4yx^{0}+9.8x^{2-1}
Multiply 2 times 4.9.
4yx^{0}+9.8x^{1}
Subtract 1 from 2.
4yx^{0}+9.8x
For any term t, t^{1}=t.
4y\times 1+9.8x
For any term t except 0, t^{0}=1.
4y+9.8x
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}