Solve for x
x=\frac{z}{10y}
y\neq 0
Solve for y
\left\{\begin{matrix}y=\frac{z}{10x}\text{, }&x\neq 0\text{ and }z\neq 0\\y\neq 0\text{, }&z=0\text{ and }x=0\end{matrix}\right.
Share
Copied to clipboard
-10y^{3}x+y^{2}z=0
Multiply both sides of the equation by y^{2}.
-10y^{3}x=-y^{2}z
Subtract y^{2}z from both sides. Anything subtracted from zero gives its negation.
-10xy^{3}=-zy^{2}
Reorder the terms.
\left(-10y^{3}\right)x=-zy^{2}
The equation is in standard form.
\frac{\left(-10y^{3}\right)x}{-10y^{3}}=-\frac{zy^{2}}{-10y^{3}}
Divide both sides by -10y^{3}.
x=-\frac{zy^{2}}{-10y^{3}}
Dividing by -10y^{3} undoes the multiplication by -10y^{3}.
x=\frac{z}{10y}
Divide -zy^{2} by -10y^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}