Solve for x
x=8
x=13
Graph
Share
Copied to clipboard
-10x^{2}+210x-800=240
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-10x^{2}+210x-800-240=240-240
Subtract 240 from both sides of the equation.
-10x^{2}+210x-800-240=0
Subtracting 240 from itself leaves 0.
-10x^{2}+210x-1040=0
Subtract 240 from -800.
x=\frac{-210±\sqrt{210^{2}-4\left(-10\right)\left(-1040\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 210 for b, and -1040 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-210±\sqrt{44100-4\left(-10\right)\left(-1040\right)}}{2\left(-10\right)}
Square 210.
x=\frac{-210±\sqrt{44100+40\left(-1040\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-210±\sqrt{44100-41600}}{2\left(-10\right)}
Multiply 40 times -1040.
x=\frac{-210±\sqrt{2500}}{2\left(-10\right)}
Add 44100 to -41600.
x=\frac{-210±50}{2\left(-10\right)}
Take the square root of 2500.
x=\frac{-210±50}{-20}
Multiply 2 times -10.
x=-\frac{160}{-20}
Now solve the equation x=\frac{-210±50}{-20} when ± is plus. Add -210 to 50.
x=8
Divide -160 by -20.
x=-\frac{260}{-20}
Now solve the equation x=\frac{-210±50}{-20} when ± is minus. Subtract 50 from -210.
x=13
Divide -260 by -20.
x=8 x=13
The equation is now solved.
-10x^{2}+210x-800=240
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-10x^{2}+210x-800-\left(-800\right)=240-\left(-800\right)
Add 800 to both sides of the equation.
-10x^{2}+210x=240-\left(-800\right)
Subtracting -800 from itself leaves 0.
-10x^{2}+210x=1040
Subtract -800 from 240.
\frac{-10x^{2}+210x}{-10}=\frac{1040}{-10}
Divide both sides by -10.
x^{2}+\frac{210}{-10}x=\frac{1040}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-21x=\frac{1040}{-10}
Divide 210 by -10.
x^{2}-21x=-104
Divide 1040 by -10.
x^{2}-21x+\left(-\frac{21}{2}\right)^{2}=-104+\left(-\frac{21}{2}\right)^{2}
Divide -21, the coefficient of the x term, by 2 to get -\frac{21}{2}. Then add the square of -\frac{21}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-21x+\frac{441}{4}=-104+\frac{441}{4}
Square -\frac{21}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-21x+\frac{441}{4}=\frac{25}{4}
Add -104 to \frac{441}{4}.
\left(x-\frac{21}{2}\right)^{2}=\frac{25}{4}
Factor x^{2}-21x+\frac{441}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{21}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
x-\frac{21}{2}=\frac{5}{2} x-\frac{21}{2}=-\frac{5}{2}
Simplify.
x=13 x=8
Add \frac{21}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}