Solve for x
x=15
x=130
Graph
Share
Copied to clipboard
-10x^{2}+1450x+10000=29500
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-10x^{2}+1450x+10000-29500=29500-29500
Subtract 29500 from both sides of the equation.
-10x^{2}+1450x+10000-29500=0
Subtracting 29500 from itself leaves 0.
-10x^{2}+1450x-19500=0
Subtract 29500 from 10000.
x=\frac{-1450±\sqrt{1450^{2}-4\left(-10\right)\left(-19500\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 1450 for b, and -19500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1450±\sqrt{2102500-4\left(-10\right)\left(-19500\right)}}{2\left(-10\right)}
Square 1450.
x=\frac{-1450±\sqrt{2102500+40\left(-19500\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-1450±\sqrt{2102500-780000}}{2\left(-10\right)}
Multiply 40 times -19500.
x=\frac{-1450±\sqrt{1322500}}{2\left(-10\right)}
Add 2102500 to -780000.
x=\frac{-1450±1150}{2\left(-10\right)}
Take the square root of 1322500.
x=\frac{-1450±1150}{-20}
Multiply 2 times -10.
x=-\frac{300}{-20}
Now solve the equation x=\frac{-1450±1150}{-20} when ± is plus. Add -1450 to 1150.
x=15
Divide -300 by -20.
x=-\frac{2600}{-20}
Now solve the equation x=\frac{-1450±1150}{-20} when ± is minus. Subtract 1150 from -1450.
x=130
Divide -2600 by -20.
x=15 x=130
The equation is now solved.
-10x^{2}+1450x+10000=29500
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-10x^{2}+1450x+10000-10000=29500-10000
Subtract 10000 from both sides of the equation.
-10x^{2}+1450x=29500-10000
Subtracting 10000 from itself leaves 0.
-10x^{2}+1450x=19500
Subtract 10000 from 29500.
\frac{-10x^{2}+1450x}{-10}=\frac{19500}{-10}
Divide both sides by -10.
x^{2}+\frac{1450}{-10}x=\frac{19500}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-145x=\frac{19500}{-10}
Divide 1450 by -10.
x^{2}-145x=-1950
Divide 19500 by -10.
x^{2}-145x+\left(-\frac{145}{2}\right)^{2}=-1950+\left(-\frac{145}{2}\right)^{2}
Divide -145, the coefficient of the x term, by 2 to get -\frac{145}{2}. Then add the square of -\frac{145}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-145x+\frac{21025}{4}=-1950+\frac{21025}{4}
Square -\frac{145}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-145x+\frac{21025}{4}=\frac{13225}{4}
Add -1950 to \frac{21025}{4}.
\left(x-\frac{145}{2}\right)^{2}=\frac{13225}{4}
Factor x^{2}-145x+\frac{21025}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{145}{2}\right)^{2}}=\sqrt{\frac{13225}{4}}
Take the square root of both sides of the equation.
x-\frac{145}{2}=\frac{115}{2} x-\frac{145}{2}=-\frac{115}{2}
Simplify.
x=130 x=15
Add \frac{145}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}