Solve for x
x=\frac{18-20y}{23}
Solve for y
y=-\frac{23x}{20}+0.9
Graph
Share
Copied to clipboard
-1.5x+9-10x=10y
Subtract 10x from both sides.
-11.5x+9=10y
Combine -1.5x and -10x to get -11.5x.
-11.5x=10y-9
Subtract 9 from both sides.
\frac{-11.5x}{-11.5}=\frac{10y-9}{-11.5}
Divide both sides of the equation by -11.5, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{10y-9}{-11.5}
Dividing by -11.5 undoes the multiplication by -11.5.
x=\frac{18-20y}{23}
Divide 10y-9 by -11.5 by multiplying 10y-9 by the reciprocal of -11.5.
10x+10y=-1.5x+9
Swap sides so that all variable terms are on the left hand side.
10y=-1.5x+9-10x
Subtract 10x from both sides.
10y=-11.5x+9
Combine -1.5x and -10x to get -11.5x.
10y=-\frac{23x}{2}+9
The equation is in standard form.
\frac{10y}{10}=\frac{-\frac{23x}{2}+9}{10}
Divide both sides by 10.
y=\frac{-\frac{23x}{2}+9}{10}
Dividing by 10 undoes the multiplication by 10.
y=-\frac{23x}{20}+\frac{9}{10}
Divide -\frac{23x}{2}+9 by 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}