Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-1-\left(1-2\times \left(\frac{4}{5}\right)^{2}\right)x=\left(\frac{4}{5}\right)^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-1-\left(1-2\times \frac{16}{25}\right)x=\left(\frac{4}{5}\right)^{4}
Calculate \frac{4}{5} to the power of 2 and get \frac{16}{25}.
-1-\left(1-\frac{32}{25}\right)x=\left(\frac{4}{5}\right)^{4}
Multiply 2 and \frac{16}{25} to get \frac{32}{25}.
-1-\left(-\frac{7}{25}x\right)=\left(\frac{4}{5}\right)^{4}
Subtract \frac{32}{25} from 1 to get -\frac{7}{25}.
-1+\frac{7}{25}x=\left(\frac{4}{5}\right)^{4}
The opposite of -\frac{7}{25}x is \frac{7}{25}x.
-1+\frac{7}{25}x=\frac{256}{625}
Calculate \frac{4}{5} to the power of 4 and get \frac{256}{625}.
\frac{7}{25}x=\frac{256}{625}+1
Add 1 to both sides.
\frac{7}{25}x=\frac{881}{625}
Add \frac{256}{625} and 1 to get \frac{881}{625}.
x=\frac{881}{625}\times \frac{25}{7}
Multiply both sides by \frac{25}{7}, the reciprocal of \frac{7}{25}.
x=\frac{881}{175}
Multiply \frac{881}{625} and \frac{25}{7} to get \frac{881}{175}.