Solve for x
x = \frac{881}{175} = 5\frac{6}{175} \approx 5.034285714
Graph
Share
Copied to clipboard
-1-\left(1-2\times \left(\frac{4}{5}\right)^{2}\right)x=\left(\frac{4}{5}\right)^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-1-\left(1-2\times \frac{16}{25}\right)x=\left(\frac{4}{5}\right)^{4}
Calculate \frac{4}{5} to the power of 2 and get \frac{16}{25}.
-1-\left(1-\frac{32}{25}\right)x=\left(\frac{4}{5}\right)^{4}
Multiply 2 and \frac{16}{25} to get \frac{32}{25}.
-1-\left(-\frac{7}{25}x\right)=\left(\frac{4}{5}\right)^{4}
Subtract \frac{32}{25} from 1 to get -\frac{7}{25}.
-1+\frac{7}{25}x=\left(\frac{4}{5}\right)^{4}
The opposite of -\frac{7}{25}x is \frac{7}{25}x.
-1+\frac{7}{25}x=\frac{256}{625}
Calculate \frac{4}{5} to the power of 4 and get \frac{256}{625}.
\frac{7}{25}x=\frac{256}{625}+1
Add 1 to both sides.
\frac{7}{25}x=\frac{881}{625}
Add \frac{256}{625} and 1 to get \frac{881}{625}.
x=\frac{881}{625}\times \frac{25}{7}
Multiply both sides by \frac{25}{7}, the reciprocal of \frac{7}{25}.
x=\frac{881}{175}
Multiply \frac{881}{625} and \frac{25}{7} to get \frac{881}{175}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}