Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-2.5x=-1
Swap sides so that all variable terms are on the left hand side.
x^{2}-2.5x+1=0
Add 1 to both sides.
x=\frac{-\left(-2.5\right)±\sqrt{\left(-2.5\right)^{2}-4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2.5 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2.5\right)±\sqrt{6.25-4}}{2}
Square -2.5 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-2.5\right)±\sqrt{2.25}}{2}
Add 6.25 to -4.
x=\frac{-\left(-2.5\right)±\frac{3}{2}}{2}
Take the square root of 2.25.
x=\frac{2.5±\frac{3}{2}}{2}
The opposite of -2.5 is 2.5.
x=\frac{4}{2}
Now solve the equation x=\frac{2.5±\frac{3}{2}}{2} when ± is plus. Add 2.5 to \frac{3}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=2
Divide 4 by 2.
x=\frac{1}{2}
Now solve the equation x=\frac{2.5±\frac{3}{2}}{2} when ± is minus. Subtract \frac{3}{2} from 2.5 by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=2 x=\frac{1}{2}
The equation is now solved.
x^{2}-2.5x=-1
Swap sides so that all variable terms are on the left hand side.
x^{2}-2.5x+\left(-1.25\right)^{2}=-1+\left(-1.25\right)^{2}
Divide -2.5, the coefficient of the x term, by 2 to get -1.25. Then add the square of -1.25 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2.5x+1.5625=-1+1.5625
Square -1.25 by squaring both the numerator and the denominator of the fraction.
x^{2}-2.5x+1.5625=0.5625
Add -1 to 1.5625.
\left(x-1.25\right)^{2}=0.5625
Factor x^{2}-2.5x+1.5625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1.25\right)^{2}}=\sqrt{0.5625}
Take the square root of both sides of the equation.
x-1.25=\frac{3}{4} x-1.25=-\frac{3}{4}
Simplify.
x=2 x=\frac{1}{2}
Add 1.25 to both sides of the equation.