Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

0x^{3}+15x^{2}-x-12
Multiply 0 and 125 to get 0.
0+15x^{2}-x-12
Anything times zero gives zero.
-12+15x^{2}-x
Subtract 12 from 0 to get -12.
factor(0x^{3}+15x^{2}-x-12)
Multiply 0 and 125 to get 0.
factor(0+15x^{2}-x-12)
Anything times zero gives zero.
factor(-12+15x^{2}-x)
Subtract 12 from 0 to get -12.
15x^{2}-x-12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 15\left(-12\right)}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-60\left(-12\right)}}{2\times 15}
Multiply -4 times 15.
x=\frac{-\left(-1\right)±\sqrt{1+720}}{2\times 15}
Multiply -60 times -12.
x=\frac{-\left(-1\right)±\sqrt{721}}{2\times 15}
Add 1 to 720.
x=\frac{1±\sqrt{721}}{2\times 15}
The opposite of -1 is 1.
x=\frac{1±\sqrt{721}}{30}
Multiply 2 times 15.
x=\frac{\sqrt{721}+1}{30}
Now solve the equation x=\frac{1±\sqrt{721}}{30} when ± is plus. Add 1 to \sqrt{721}.
x=\frac{1-\sqrt{721}}{30}
Now solve the equation x=\frac{1±\sqrt{721}}{30} when ± is minus. Subtract \sqrt{721} from 1.
15x^{2}-x-12=15\left(x-\frac{\sqrt{721}+1}{30}\right)\left(x-\frac{1-\sqrt{721}}{30}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1+\sqrt{721}}{30} for x_{1} and \frac{1-\sqrt{721}}{30} for x_{2}.