Solve for x
x=\frac{1000y}{179}
Solve for y
y=\frac{179x}{1000}
Graph
Share
Copied to clipboard
-0.77x+2.56x-y\times 10=0
Divide 0.64x by 0.25 to get 2.56x.
1.79x-y\times 10=0
Combine -0.77x and 2.56x to get 1.79x.
1.79x=0+y\times 10
Add y\times 10 to both sides.
1.79x=y\times 10
Anything plus zero gives itself.
1.79x=10y
The equation is in standard form.
\frac{1.79x}{1.79}=\frac{10y}{1.79}
Divide both sides of the equation by 1.79, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{10y}{1.79}
Dividing by 1.79 undoes the multiplication by 1.79.
x=\frac{1000y}{179}
Divide 10y by 1.79 by multiplying 10y by the reciprocal of 1.79.
-0.77x+2.56x-y\times 10=0
Divide 0.64x by 0.25 to get 2.56x.
1.79x-y\times 10=0
Combine -0.77x and 2.56x to get 1.79x.
1.79x-10y=0
Multiply -1 and 10 to get -10.
-10y=-1.79x
Subtract 1.79x from both sides. Anything subtracted from zero gives its negation.
-10y=-\frac{179x}{100}
The equation is in standard form.
\frac{-10y}{-10}=-\frac{\frac{179x}{100}}{-10}
Divide both sides by -10.
y=-\frac{\frac{179x}{100}}{-10}
Dividing by -10 undoes the multiplication by -10.
y=\frac{179x}{1000}
Divide -\frac{179x}{100} by -10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}