Solve for y (complex solution)
\left\{\begin{matrix}y=\frac{55x}{2\left(24-25z\right)}\text{, }&z\neq \frac{24}{25}\\y\in \mathrm{C}\text{, }&x=0\text{ and }z=\frac{24}{25}\end{matrix}\right.
Solve for x
x=\frac{2y\left(24-25z\right)}{55}
Solve for y
\left\{\begin{matrix}y=\frac{55x}{2\left(24-25z\right)}\text{, }&z\neq \frac{24}{25}\\y\in \mathrm{R}\text{, }&x=0\text{ and }z=\frac{24}{25}\end{matrix}\right.
Share
Copied to clipboard
-0.65x+0.96y-zy=0.45x
Subtract zy from both sides.
0.96y-zy=0.45x+0.65x
Add 0.65x to both sides.
0.96y-zy=1.1x
Combine 0.45x and 0.65x to get 1.1x.
\left(0.96-z\right)y=1.1x
Combine all terms containing y.
\left(\frac{24}{25}-z\right)y=\frac{11x}{10}
The equation is in standard form.
\frac{\left(\frac{24}{25}-z\right)y}{\frac{24}{25}-z}=\frac{11x}{10\left(\frac{24}{25}-z\right)}
Divide both sides by \frac{24}{25}-z.
y=\frac{11x}{10\left(\frac{24}{25}-z\right)}
Dividing by \frac{24}{25}-z undoes the multiplication by \frac{24}{25}-z.
y=\frac{55x}{2\left(24-25z\right)}
Divide \frac{11x}{10} by \frac{24}{25}-z.
-0.65x+0.96y-0.45x=zy
Subtract 0.45x from both sides.
-1.1x+0.96y=zy
Combine -0.65x and -0.45x to get -1.1x.
-1.1x=zy-0.96y
Subtract 0.96y from both sides.
-1.1x=yz-\frac{24y}{25}
The equation is in standard form.
\frac{-1.1x}{-1.1}=\frac{y\left(z-0.96\right)}{-1.1}
Divide both sides of the equation by -1.1, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{y\left(z-0.96\right)}{-1.1}
Dividing by -1.1 undoes the multiplication by -1.1.
x=-\frac{10y\left(z-0.96\right)}{11}
Divide y\left(-0.96+z\right) by -1.1 by multiplying y\left(-0.96+z\right) by the reciprocal of -1.1.
-0.65x+0.96y-zy=0.45x
Subtract zy from both sides.
0.96y-zy=0.45x+0.65x
Add 0.65x to both sides.
0.96y-zy=1.1x
Combine 0.45x and 0.65x to get 1.1x.
\left(0.96-z\right)y=1.1x
Combine all terms containing y.
\left(\frac{24}{25}-z\right)y=\frac{11x}{10}
The equation is in standard form.
\frac{\left(\frac{24}{25}-z\right)y}{\frac{24}{25}-z}=\frac{11x}{10\left(\frac{24}{25}-z\right)}
Divide both sides by \frac{24}{25}-z.
y=\frac{11x}{10\left(\frac{24}{25}-z\right)}
Dividing by \frac{24}{25}-z undoes the multiplication by \frac{24}{25}-z.
y=\frac{55x}{2\left(24-25z\right)}
Divide \frac{11x}{10} by \frac{24}{25}-z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}