Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

-0.6\left(\frac{8}{5}\left(-\frac{9}{13}\right)-5\right)-\left(2.9\left(-\frac{9}{13}\right)-8\right)-4\left(4-1.5\left(-\frac{9}{13}\right)\right)
Convert decimal number 1.6 to fraction \frac{16}{10}. Reduce the fraction \frac{16}{10} to lowest terms by extracting and canceling out 2.
-0.6\left(\frac{8\left(-9\right)}{5\times 13}-5\right)-\left(2.9\left(-\frac{9}{13}\right)-8\right)-4\left(4-1.5\left(-\frac{9}{13}\right)\right)
Multiply \frac{8}{5} times -\frac{9}{13} by multiplying numerator times numerator and denominator times denominator.
-0.6\left(\frac{-72}{65}-5\right)-\left(2.9\left(-\frac{9}{13}\right)-8\right)-4\left(4-1.5\left(-\frac{9}{13}\right)\right)
Do the multiplications in the fraction \frac{8\left(-9\right)}{5\times 13}.
-0.6\left(-\frac{72}{65}-5\right)-\left(2.9\left(-\frac{9}{13}\right)-8\right)-4\left(4-1.5\left(-\frac{9}{13}\right)\right)
Fraction \frac{-72}{65} can be rewritten as -\frac{72}{65} by extracting the negative sign.
-0.6\left(-\frac{72}{65}-\frac{325}{65}\right)-\left(2.9\left(-\frac{9}{13}\right)-8\right)-4\left(4-1.5\left(-\frac{9}{13}\right)\right)
Convert 5 to fraction \frac{325}{65}.
-0.6\times \frac{-72-325}{65}-\left(2.9\left(-\frac{9}{13}\right)-8\right)-4\left(4-1.5\left(-\frac{9}{13}\right)\right)
Since -\frac{72}{65} and \frac{325}{65} have the same denominator, subtract them by subtracting their numerators.
-0.6\left(-\frac{397}{65}\right)-\left(2.9\left(-\frac{9}{13}\right)-8\right)-4\left(4-1.5\left(-\frac{9}{13}\right)\right)
Subtract 325 from -72 to get -397.
-\frac{3}{5}\left(-\frac{397}{65}\right)-\left(2.9\left(-\frac{9}{13}\right)-8\right)-4\left(4-1.5\left(-\frac{9}{13}\right)\right)
Convert decimal number -0.6 to fraction -\frac{6}{10}. Reduce the fraction -\frac{6}{10} to lowest terms by extracting and canceling out 2.
\frac{-3\left(-397\right)}{5\times 65}-\left(2.9\left(-\frac{9}{13}\right)-8\right)-4\left(4-1.5\left(-\frac{9}{13}\right)\right)
Multiply -\frac{3}{5} times -\frac{397}{65} by multiplying numerator times numerator and denominator times denominator.
\frac{1191}{325}-\left(2.9\left(-\frac{9}{13}\right)-8\right)-4\left(4-1.5\left(-\frac{9}{13}\right)\right)
Do the multiplications in the fraction \frac{-3\left(-397\right)}{5\times 65}.
\frac{1191}{325}-\left(\frac{29}{10}\left(-\frac{9}{13}\right)-8\right)-4\left(4-1.5\left(-\frac{9}{13}\right)\right)
Convert decimal number 2.9 to fraction \frac{29}{10}.
\frac{1191}{325}-\left(\frac{29\left(-9\right)}{10\times 13}-8\right)-4\left(4-1.5\left(-\frac{9}{13}\right)\right)
Multiply \frac{29}{10} times -\frac{9}{13} by multiplying numerator times numerator and denominator times denominator.
\frac{1191}{325}-\left(\frac{-261}{130}-8\right)-4\left(4-1.5\left(-\frac{9}{13}\right)\right)
Do the multiplications in the fraction \frac{29\left(-9\right)}{10\times 13}.
\frac{1191}{325}-\left(-\frac{261}{130}-8\right)-4\left(4-1.5\left(-\frac{9}{13}\right)\right)
Fraction \frac{-261}{130} can be rewritten as -\frac{261}{130} by extracting the negative sign.
\frac{1191}{325}-\left(-\frac{261}{130}-\frac{1040}{130}\right)-4\left(4-1.5\left(-\frac{9}{13}\right)\right)
Convert 8 to fraction \frac{1040}{130}.
\frac{1191}{325}-\frac{-261-1040}{130}-4\left(4-1.5\left(-\frac{9}{13}\right)\right)
Since -\frac{261}{130} and \frac{1040}{130} have the same denominator, subtract them by subtracting their numerators.
\frac{1191}{325}-\left(-\frac{1301}{130}\right)-4\left(4-1.5\left(-\frac{9}{13}\right)\right)
Subtract 1040 from -261 to get -1301.
\frac{1191}{325}+\frac{1301}{130}-4\left(4-1.5\left(-\frac{9}{13}\right)\right)
The opposite of -\frac{1301}{130} is \frac{1301}{130}.
\frac{2382}{650}+\frac{6505}{650}-4\left(4-1.5\left(-\frac{9}{13}\right)\right)
Least common multiple of 325 and 130 is 650. Convert \frac{1191}{325} and \frac{1301}{130} to fractions with denominator 650.
\frac{2382+6505}{650}-4\left(4-1.5\left(-\frac{9}{13}\right)\right)
Since \frac{2382}{650} and \frac{6505}{650} have the same denominator, add them by adding their numerators.
\frac{8887}{650}-4\left(4-1.5\left(-\frac{9}{13}\right)\right)
Add 2382 and 6505 to get 8887.
\frac{8887}{650}-4\left(4-\frac{3}{2}\left(-\frac{9}{13}\right)\right)
Convert decimal number 1.5 to fraction \frac{15}{10}. Reduce the fraction \frac{15}{10} to lowest terms by extracting and canceling out 5.
\frac{8887}{650}-4\left(4-\frac{3\left(-9\right)}{2\times 13}\right)
Multiply \frac{3}{2} times -\frac{9}{13} by multiplying numerator times numerator and denominator times denominator.
\frac{8887}{650}-4\left(4-\frac{-27}{26}\right)
Do the multiplications in the fraction \frac{3\left(-9\right)}{2\times 13}.
\frac{8887}{650}-4\left(4-\left(-\frac{27}{26}\right)\right)
Fraction \frac{-27}{26} can be rewritten as -\frac{27}{26} by extracting the negative sign.
\frac{8887}{650}-4\left(4+\frac{27}{26}\right)
The opposite of -\frac{27}{26} is \frac{27}{26}.
\frac{8887}{650}-4\left(\frac{104}{26}+\frac{27}{26}\right)
Convert 4 to fraction \frac{104}{26}.
\frac{8887}{650}-4\times \frac{104+27}{26}
Since \frac{104}{26} and \frac{27}{26} have the same denominator, add them by adding their numerators.
\frac{8887}{650}-4\times \frac{131}{26}
Add 104 and 27 to get 131.
\frac{8887}{650}-\frac{4\times 131}{26}
Express 4\times \frac{131}{26} as a single fraction.
\frac{8887}{650}-\frac{524}{26}
Multiply 4 and 131 to get 524.
\frac{8887}{650}-\frac{262}{13}
Reduce the fraction \frac{524}{26} to lowest terms by extracting and canceling out 2.
\frac{8887}{650}-\frac{13100}{650}
Least common multiple of 650 and 13 is 650. Convert \frac{8887}{650} and \frac{262}{13} to fractions with denominator 650.
\frac{8887-13100}{650}
Since \frac{8887}{650} and \frac{13100}{650} have the same denominator, subtract them by subtracting their numerators.
-\frac{4213}{650}
Subtract 13100 from 8887 to get -4213.