Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-0.25x^{2}+5x-8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{5^{2}-4\left(-0.25\right)\left(-8\right)}}{2\left(-0.25\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -0.25 for a, 5 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-0.25\right)\left(-8\right)}}{2\left(-0.25\right)}
Square 5.
x=\frac{-5±\sqrt{25-8}}{2\left(-0.25\right)}
Multiply -4 times -0.25.
x=\frac{-5±\sqrt{17}}{2\left(-0.25\right)}
Add 25 to -8.
x=\frac{-5±\sqrt{17}}{-0.5}
Multiply 2 times -0.25.
x=\frac{\sqrt{17}-5}{-0.5}
Now solve the equation x=\frac{-5±\sqrt{17}}{-0.5} when ± is plus. Add -5 to \sqrt{17}.
x=10-2\sqrt{17}
Divide -5+\sqrt{17} by -0.5 by multiplying -5+\sqrt{17} by the reciprocal of -0.5.
x=\frac{-\sqrt{17}-5}{-0.5}
Now solve the equation x=\frac{-5±\sqrt{17}}{-0.5} when ± is minus. Subtract \sqrt{17} from -5.
x=2\sqrt{17}+10
Divide -5-\sqrt{17} by -0.5 by multiplying -5-\sqrt{17} by the reciprocal of -0.5.
x=10-2\sqrt{17} x=2\sqrt{17}+10
The equation is now solved.
-0.25x^{2}+5x-8=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-0.25x^{2}+5x-8-\left(-8\right)=-\left(-8\right)
Add 8 to both sides of the equation.
-0.25x^{2}+5x=-\left(-8\right)
Subtracting -8 from itself leaves 0.
-0.25x^{2}+5x=8
Subtract -8 from 0.
\frac{-0.25x^{2}+5x}{-0.25}=\frac{8}{-0.25}
Multiply both sides by -4.
x^{2}+\frac{5}{-0.25}x=\frac{8}{-0.25}
Dividing by -0.25 undoes the multiplication by -0.25.
x^{2}-20x=\frac{8}{-0.25}
Divide 5 by -0.25 by multiplying 5 by the reciprocal of -0.25.
x^{2}-20x=-32
Divide 8 by -0.25 by multiplying 8 by the reciprocal of -0.25.
x^{2}-20x+\left(-10\right)^{2}=-32+\left(-10\right)^{2}
Divide -20, the coefficient of the x term, by 2 to get -10. Then add the square of -10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-20x+100=-32+100
Square -10.
x^{2}-20x+100=68
Add -32 to 100.
\left(x-10\right)^{2}=68
Factor x^{2}-20x+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-10\right)^{2}}=\sqrt{68}
Take the square root of both sides of the equation.
x-10=2\sqrt{17} x-10=-2\sqrt{17}
Simplify.
x=2\sqrt{17}+10 x=10-2\sqrt{17}
Add 10 to both sides of the equation.