Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-\left(\frac{2x}{2}+\frac{3\sqrt{2}}{2}\right)\right)\left(3x+\frac{\sqrt{2}}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2}{2}.
\left(-\frac{2x+3\sqrt{2}}{2}\right)\left(3x+\frac{\sqrt{2}}{2}\right)
Since \frac{2x}{2} and \frac{3\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
\left(-\frac{2x+3\sqrt{2}}{2}\right)\left(\frac{2\times 3x}{2}+\frac{\sqrt{2}}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x times \frac{2}{2}.
\left(-\frac{2x+3\sqrt{2}}{2}\right)\times \frac{2\times 3x+\sqrt{2}}{2}
Since \frac{2\times 3x}{2} and \frac{\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
\left(-\frac{2x+3\sqrt{2}}{2}\right)\times \frac{6x+\sqrt{2}}{2}
Do the multiplications in 2\times 3x+\sqrt{2}.
\frac{-\left(2x+3\sqrt{2}\right)\left(6x+\sqrt{2}\right)}{2\times 2}
Multiply -\frac{2x+3\sqrt{2}}{2} times \frac{6x+\sqrt{2}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(2x+3\sqrt{2}\right)\left(6x+\sqrt{2}\right)}{4}
Multiply 2 and 2 to get 4.
\frac{\left(-2x-3\sqrt{2}\right)\left(6x+\sqrt{2}\right)}{4}
Use the distributive property to multiply -1 by 2x+3\sqrt{2}.
\frac{-12x^{2}-2x\sqrt{2}-18x\sqrt{2}-3\left(\sqrt{2}\right)^{2}}{4}
Apply the distributive property by multiplying each term of -2x-3\sqrt{2} by each term of 6x+\sqrt{2}.
\frac{-12x^{2}-20x\sqrt{2}-3\left(\sqrt{2}\right)^{2}}{4}
Combine -2x\sqrt{2} and -18x\sqrt{2} to get -20x\sqrt{2}.
\frac{-12x^{2}-20x\sqrt{2}-3\times 2}{4}
The square of \sqrt{2} is 2.
\frac{-12x^{2}-20x\sqrt{2}-6}{4}
Multiply -3 and 2 to get -6.