Solve for k
k=3+6i
k=3-6i
Share
Copied to clipboard
\left(-\left(k-3\right)\right)\left(3k-9\right)=108
Multiply both sides of the equation by 4.
\left(-k-\left(-3\right)\right)\left(3k-9\right)=108
To find the opposite of k-3, find the opposite of each term.
\left(-k+3\right)\left(3k-9\right)=108
The opposite of -3 is 3.
-3k^{2}+9k+9k-27=108
Apply the distributive property by multiplying each term of -k+3 by each term of 3k-9.
-3k^{2}+18k-27=108
Combine 9k and 9k to get 18k.
-3k^{2}+18k-27-108=0
Subtract 108 from both sides.
-3k^{2}+18k-135=0
Subtract 108 from -27 to get -135.
k=\frac{-18±\sqrt{18^{2}-4\left(-3\right)\left(-135\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 18 for b, and -135 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-18±\sqrt{324-4\left(-3\right)\left(-135\right)}}{2\left(-3\right)}
Square 18.
k=\frac{-18±\sqrt{324+12\left(-135\right)}}{2\left(-3\right)}
Multiply -4 times -3.
k=\frac{-18±\sqrt{324-1620}}{2\left(-3\right)}
Multiply 12 times -135.
k=\frac{-18±\sqrt{-1296}}{2\left(-3\right)}
Add 324 to -1620.
k=\frac{-18±36i}{2\left(-3\right)}
Take the square root of -1296.
k=\frac{-18±36i}{-6}
Multiply 2 times -3.
k=\frac{-18+36i}{-6}
Now solve the equation k=\frac{-18±36i}{-6} when ± is plus. Add -18 to 36i.
k=3-6i
Divide -18+36i by -6.
k=\frac{-18-36i}{-6}
Now solve the equation k=\frac{-18±36i}{-6} when ± is minus. Subtract 36i from -18.
k=3+6i
Divide -18-36i by -6.
k=3-6i k=3+6i
The equation is now solved.
\left(-\left(k-3\right)\right)\left(3k-9\right)=108
Multiply both sides of the equation by 4.
\left(-k-\left(-3\right)\right)\left(3k-9\right)=108
To find the opposite of k-3, find the opposite of each term.
\left(-k+3\right)\left(3k-9\right)=108
The opposite of -3 is 3.
-3k^{2}+9k+9k-27=108
Apply the distributive property by multiplying each term of -k+3 by each term of 3k-9.
-3k^{2}+18k-27=108
Combine 9k and 9k to get 18k.
-3k^{2}+18k=108+27
Add 27 to both sides.
-3k^{2}+18k=135
Add 108 and 27 to get 135.
\frac{-3k^{2}+18k}{-3}=\frac{135}{-3}
Divide both sides by -3.
k^{2}+\frac{18}{-3}k=\frac{135}{-3}
Dividing by -3 undoes the multiplication by -3.
k^{2}-6k=\frac{135}{-3}
Divide 18 by -3.
k^{2}-6k=-45
Divide 135 by -3.
k^{2}-6k+\left(-3\right)^{2}=-45+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}-6k+9=-45+9
Square -3.
k^{2}-6k+9=-36
Add -45 to 9.
\left(k-3\right)^{2}=-36
Factor k^{2}-6k+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-3\right)^{2}}=\sqrt{-36}
Take the square root of both sides of the equation.
k-3=6i k-3=-6i
Simplify.
k=3+6i k=3-6i
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}