Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-3x-\left(-4\right)\right)\times 4\left(x-5\right)=2\left(7-4x\right)
To find the opposite of 3x-4, find the opposite of each term.
\left(-3x+4\right)\times 4\left(x-5\right)=2\left(7-4x\right)
The opposite of -4 is 4.
\left(-12x+16\right)\left(x-5\right)=2\left(7-4x\right)
Use the distributive property to multiply -3x+4 by 4.
-12x^{2}+60x+16x-80=2\left(7-4x\right)
Apply the distributive property by multiplying each term of -12x+16 by each term of x-5.
-12x^{2}+76x-80=2\left(7-4x\right)
Combine 60x and 16x to get 76x.
-12x^{2}+76x-80=14-8x
Use the distributive property to multiply 2 by 7-4x.
-12x^{2}+76x-80-14=-8x
Subtract 14 from both sides.
-12x^{2}+76x-94=-8x
Subtract 14 from -80 to get -94.
-12x^{2}+76x-94+8x=0
Add 8x to both sides.
-12x^{2}+84x-94=0
Combine 76x and 8x to get 84x.
x=\frac{-84±\sqrt{84^{2}-4\left(-12\right)\left(-94\right)}}{2\left(-12\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -12 for a, 84 for b, and -94 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-84±\sqrt{7056-4\left(-12\right)\left(-94\right)}}{2\left(-12\right)}
Square 84.
x=\frac{-84±\sqrt{7056+48\left(-94\right)}}{2\left(-12\right)}
Multiply -4 times -12.
x=\frac{-84±\sqrt{7056-4512}}{2\left(-12\right)}
Multiply 48 times -94.
x=\frac{-84±\sqrt{2544}}{2\left(-12\right)}
Add 7056 to -4512.
x=\frac{-84±4\sqrt{159}}{2\left(-12\right)}
Take the square root of 2544.
x=\frac{-84±4\sqrt{159}}{-24}
Multiply 2 times -12.
x=\frac{4\sqrt{159}-84}{-24}
Now solve the equation x=\frac{-84±4\sqrt{159}}{-24} when ± is plus. Add -84 to 4\sqrt{159}.
x=-\frac{\sqrt{159}}{6}+\frac{7}{2}
Divide -84+4\sqrt{159} by -24.
x=\frac{-4\sqrt{159}-84}{-24}
Now solve the equation x=\frac{-84±4\sqrt{159}}{-24} when ± is minus. Subtract 4\sqrt{159} from -84.
x=\frac{\sqrt{159}}{6}+\frac{7}{2}
Divide -84-4\sqrt{159} by -24.
x=-\frac{\sqrt{159}}{6}+\frac{7}{2} x=\frac{\sqrt{159}}{6}+\frac{7}{2}
The equation is now solved.
\left(-3x-\left(-4\right)\right)\times 4\left(x-5\right)=2\left(7-4x\right)
To find the opposite of 3x-4, find the opposite of each term.
\left(-3x+4\right)\times 4\left(x-5\right)=2\left(7-4x\right)
The opposite of -4 is 4.
\left(-12x+16\right)\left(x-5\right)=2\left(7-4x\right)
Use the distributive property to multiply -3x+4 by 4.
-12x^{2}+60x+16x-80=2\left(7-4x\right)
Apply the distributive property by multiplying each term of -12x+16 by each term of x-5.
-12x^{2}+76x-80=2\left(7-4x\right)
Combine 60x and 16x to get 76x.
-12x^{2}+76x-80=14-8x
Use the distributive property to multiply 2 by 7-4x.
-12x^{2}+76x-80+8x=14
Add 8x to both sides.
-12x^{2}+84x-80=14
Combine 76x and 8x to get 84x.
-12x^{2}+84x=14+80
Add 80 to both sides.
-12x^{2}+84x=94
Add 14 and 80 to get 94.
\frac{-12x^{2}+84x}{-12}=\frac{94}{-12}
Divide both sides by -12.
x^{2}+\frac{84}{-12}x=\frac{94}{-12}
Dividing by -12 undoes the multiplication by -12.
x^{2}-7x=\frac{94}{-12}
Divide 84 by -12.
x^{2}-7x=-\frac{47}{6}
Reduce the fraction \frac{94}{-12} to lowest terms by extracting and canceling out 2.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-\frac{47}{6}+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=-\frac{47}{6}+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=\frac{53}{12}
Add -\frac{47}{6} to \frac{49}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{2}\right)^{2}=\frac{53}{12}
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{53}{12}}
Take the square root of both sides of the equation.
x-\frac{7}{2}=\frac{\sqrt{159}}{6} x-\frac{7}{2}=-\frac{\sqrt{159}}{6}
Simplify.
x=\frac{\sqrt{159}}{6}+\frac{7}{2} x=-\frac{\sqrt{159}}{6}+\frac{7}{2}
Add \frac{7}{2} to both sides of the equation.