Evaluate
\frac{7}{60}\approx 0.116666667
Factor
\frac{7}{2 ^ {2} \cdot 3 \cdot 5} = 0.11666666666666667
Share
Copied to clipboard
-\left(-\frac{4}{12}+\frac{3}{12}\right)-\left(-\frac{1}{5}+\frac{1}{6}\right)
Least common multiple of 3 and 4 is 12. Convert -\frac{1}{3} and \frac{1}{4} to fractions with denominator 12.
-\frac{-4+3}{12}-\left(-\frac{1}{5}+\frac{1}{6}\right)
Since -\frac{4}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
-\left(-\frac{1}{12}\right)-\left(-\frac{1}{5}+\frac{1}{6}\right)
Add -4 and 3 to get -1.
\frac{1}{12}-\left(-\frac{1}{5}+\frac{1}{6}\right)
The opposite of -\frac{1}{12} is \frac{1}{12}.
\frac{1}{12}-\left(-\frac{6}{30}+\frac{5}{30}\right)
Least common multiple of 5 and 6 is 30. Convert -\frac{1}{5} and \frac{1}{6} to fractions with denominator 30.
\frac{1}{12}-\frac{-6+5}{30}
Since -\frac{6}{30} and \frac{5}{30} have the same denominator, add them by adding their numerators.
\frac{1}{12}-\left(-\frac{1}{30}\right)
Add -6 and 5 to get -1.
\frac{1}{12}+\frac{1}{30}
The opposite of -\frac{1}{30} is \frac{1}{30}.
\frac{5}{60}+\frac{2}{60}
Least common multiple of 12 and 30 is 60. Convert \frac{1}{12} and \frac{1}{30} to fractions with denominator 60.
\frac{5+2}{60}
Since \frac{5}{60} and \frac{2}{60} have the same denominator, add them by adding their numerators.
\frac{7}{60}
Add 5 and 2 to get 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}