Factor
-y\left(y+2\right)
Evaluate
-y\left(y+2\right)
Graph
Share
Copied to clipboard
y\left(-y-2\right)
Factor out y.
-y^{2}-2y=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-2\right)±2}{2\left(-1\right)}
Take the square root of \left(-2\right)^{2}.
y=\frac{2±2}{2\left(-1\right)}
The opposite of -2 is 2.
y=\frac{2±2}{-2}
Multiply 2 times -1.
y=\frac{4}{-2}
Now solve the equation y=\frac{2±2}{-2} when ± is plus. Add 2 to 2.
y=-2
Divide 4 by -2.
y=\frac{0}{-2}
Now solve the equation y=\frac{2±2}{-2} when ± is minus. Subtract 2 from 2.
y=0
Divide 0 by -2.
-y^{2}-2y=-\left(y-\left(-2\right)\right)y
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -2 for x_{1} and 0 for x_{2}.
-y^{2}-2y=-\left(y+2\right)y
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}