Solve for x
x=\frac{y}{3y+2}
y\neq -\frac{2}{3}
Solve for y
y=\frac{2x}{1-3x}
x\neq \frac{1}{3}
Graph
Share
Copied to clipboard
-\left(3x-1\right)y=2x
Variable x cannot be equal to \frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by 3x-1.
-\left(3xy-y\right)=2x
Use the distributive property to multiply 3x-1 by y.
-3xy+y=2x
To find the opposite of 3xy-y, find the opposite of each term.
-3xy+y-2x=0
Subtract 2x from both sides.
-3xy-2x=-y
Subtract y from both sides. Anything subtracted from zero gives its negation.
\left(-3y-2\right)x=-y
Combine all terms containing x.
\frac{\left(-3y-2\right)x}{-3y-2}=-\frac{y}{-3y-2}
Divide both sides by -3y-2.
x=-\frac{y}{-3y-2}
Dividing by -3y-2 undoes the multiplication by -3y-2.
x=\frac{y}{3y+2}
Divide -y by -3y-2.
x=\frac{y}{3y+2}\text{, }x\neq \frac{1}{3}
Variable x cannot be equal to \frac{1}{3}.
-\left(3x-1\right)y=2x
Multiply both sides of the equation by 3x-1.
-\left(3xy-y\right)=2x
Use the distributive property to multiply 3x-1 by y.
-3xy+y=2x
To find the opposite of 3xy-y, find the opposite of each term.
\left(-3x+1\right)y=2x
Combine all terms containing y.
\left(1-3x\right)y=2x
The equation is in standard form.
\frac{\left(1-3x\right)y}{1-3x}=\frac{2x}{1-3x}
Divide both sides by -3x+1.
y=\frac{2x}{1-3x}
Dividing by -3x+1 undoes the multiplication by -3x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}