Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-x-5
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-1 ab=4\left(-5\right)=-20
Factor the expression by grouping. First, the expression needs to be rewritten as 4x^{2}+ax+bx-5. To find a and b, set up a system to be solved.
1,-20 2,-10 4,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -20.
1-20=-19 2-10=-8 4-5=-1
Calculate the sum for each pair.
a=-5 b=4
The solution is the pair that gives sum -1.
\left(4x^{2}-5x\right)+\left(4x-5\right)
Rewrite 4x^{2}-x-5 as \left(4x^{2}-5x\right)+\left(4x-5\right).
x\left(4x-5\right)+4x-5
Factor out x in 4x^{2}-5x.
\left(4x-5\right)\left(x+1\right)
Factor out common term 4x-5 by using distributive property.
4x^{2}-x-5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 4\left(-5\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-16\left(-5\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-1\right)±\sqrt{1+80}}{2\times 4}
Multiply -16 times -5.
x=\frac{-\left(-1\right)±\sqrt{81}}{2\times 4}
Add 1 to 80.
x=\frac{-\left(-1\right)±9}{2\times 4}
Take the square root of 81.
x=\frac{1±9}{2\times 4}
The opposite of -1 is 1.
x=\frac{1±9}{8}
Multiply 2 times 4.
x=\frac{10}{8}
Now solve the equation x=\frac{1±9}{8} when ± is plus. Add 1 to 9.
x=\frac{5}{4}
Reduce the fraction \frac{10}{8} to lowest terms by extracting and canceling out 2.
x=-\frac{8}{8}
Now solve the equation x=\frac{1±9}{8} when ± is minus. Subtract 9 from 1.
x=-1
Divide -8 by 8.
4x^{2}-x-5=4\left(x-\frac{5}{4}\right)\left(x-\left(-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{4} for x_{1} and -1 for x_{2}.
4x^{2}-x-5=4\left(x-\frac{5}{4}\right)\left(x+1\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
4x^{2}-x-5=4\times \frac{4x-5}{4}\left(x+1\right)
Subtract \frac{5}{4} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
4x^{2}-x-5=\left(4x-5\right)\left(x+1\right)
Cancel out 4, the greatest common factor in 4 and 4.