Solve for x
x=8.1
x=0
Graph
Share
Copied to clipboard
\left(-x\right)x-8.1\left(-x\right)=0
Use the distributive property to multiply -x by x-8.1.
\left(-x\right)x+8.1x=0
Multiply -8.1 and -1 to get 8.1.
-x^{2}+8.1x=0
Multiply x and x to get x^{2}.
x\left(-x+8.1\right)=0
Factor out x.
x=0 x=\frac{81}{10}
To find equation solutions, solve x=0 and -x+8.1=0.
\left(-x\right)x-8.1\left(-x\right)=0
Use the distributive property to multiply -x by x-8.1.
\left(-x\right)x+8.1x=0
Multiply -8.1 and -1 to get 8.1.
-x^{2}+8.1x=0
Multiply x and x to get x^{2}.
-x^{2}+\frac{81}{10}x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{81}{10}±\sqrt{\left(\frac{81}{10}\right)^{2}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, \frac{81}{10} for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{81}{10}±\frac{81}{10}}{2\left(-1\right)}
Take the square root of \left(\frac{81}{10}\right)^{2}.
x=\frac{-\frac{81}{10}±\frac{81}{10}}{-2}
Multiply 2 times -1.
x=\frac{0}{-2}
Now solve the equation x=\frac{-\frac{81}{10}±\frac{81}{10}}{-2} when ± is plus. Add -\frac{81}{10} to \frac{81}{10} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=0
Divide 0 by -2.
x=-\frac{\frac{81}{5}}{-2}
Now solve the equation x=\frac{-\frac{81}{10}±\frac{81}{10}}{-2} when ± is minus. Subtract \frac{81}{10} from -\frac{81}{10} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{81}{10}
Divide -\frac{81}{5} by -2.
x=0 x=\frac{81}{10}
The equation is now solved.
\left(-x\right)x-8.1\left(-x\right)=0
Use the distributive property to multiply -x by x-8.1.
\left(-x\right)x+8.1x=0
Multiply -8.1 and -1 to get 8.1.
-x^{2}+8.1x=0
Multiply x and x to get x^{2}.
-x^{2}+\frac{81}{10}x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+\frac{81}{10}x}{-1}=\frac{0}{-1}
Divide both sides by -1.
x^{2}+\frac{\frac{81}{10}}{-1}x=\frac{0}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-\frac{81}{10}x=\frac{0}{-1}
Divide \frac{81}{10} by -1.
x^{2}-\frac{81}{10}x=0
Divide 0 by -1.
x^{2}-\frac{81}{10}x+\left(-\frac{81}{20}\right)^{2}=\left(-\frac{81}{20}\right)^{2}
Divide -\frac{81}{10}, the coefficient of the x term, by 2 to get -\frac{81}{20}. Then add the square of -\frac{81}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{81}{10}x+\frac{6561}{400}=\frac{6561}{400}
Square -\frac{81}{20} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{81}{20}\right)^{2}=\frac{6561}{400}
Factor x^{2}-\frac{81}{10}x+\frac{6561}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{81}{20}\right)^{2}}=\sqrt{\frac{6561}{400}}
Take the square root of both sides of the equation.
x-\frac{81}{20}=\frac{81}{20} x-\frac{81}{20}=-\frac{81}{20}
Simplify.
x=\frac{81}{10} x=0
Add \frac{81}{20} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}