Evaluate
\frac{-x^{4}-x^{3}+12x^{2}+12x-8}{x+1}
Differentiate w.r.t. x
\frac{20+24x+9x^{2}-6x^{3}-3x^{4}}{\left(x+1\right)^{2}}
Graph
Share
Copied to clipboard
-x^{3}+12x-\frac{8}{x+1}
Multiply 2 and 6 to get 12.
\frac{\left(-x^{3}+12x\right)\left(x+1\right)}{x+1}-\frac{8}{x+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply -x^{3}+12x times \frac{x+1}{x+1}.
\frac{\left(-x^{3}+12x\right)\left(x+1\right)-8}{x+1}
Since \frac{\left(-x^{3}+12x\right)\left(x+1\right)}{x+1} and \frac{8}{x+1} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{4}-x^{3}+12x^{2}+12x-8}{x+1}
Do the multiplications in \left(-x^{3}+12x\right)\left(x+1\right)-8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}