Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-9 ab=-\left(-20\right)=20
Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx-20. To find a and b, set up a system to be solved.
-1,-20 -2,-10 -4,-5
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 20.
-1-20=-21 -2-10=-12 -4-5=-9
Calculate the sum for each pair.
a=-4 b=-5
The solution is the pair that gives sum -9.
\left(-x^{2}-4x\right)+\left(-5x-20\right)
Rewrite -x^{2}-9x-20 as \left(-x^{2}-4x\right)+\left(-5x-20\right).
x\left(-x-4\right)+5\left(-x-4\right)
Factor out x in the first and 5 in the second group.
\left(-x-4\right)\left(x+5\right)
Factor out common term -x-4 by using distributive property.
-x^{2}-9x-20=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-1\right)\left(-20\right)}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-1\right)\left(-20\right)}}{2\left(-1\right)}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81+4\left(-20\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-9\right)±\sqrt{81-80}}{2\left(-1\right)}
Multiply 4 times -20.
x=\frac{-\left(-9\right)±\sqrt{1}}{2\left(-1\right)}
Add 81 to -80.
x=\frac{-\left(-9\right)±1}{2\left(-1\right)}
Take the square root of 1.
x=\frac{9±1}{2\left(-1\right)}
The opposite of -9 is 9.
x=\frac{9±1}{-2}
Multiply 2 times -1.
x=\frac{10}{-2}
Now solve the equation x=\frac{9±1}{-2} when ± is plus. Add 9 to 1.
x=-5
Divide 10 by -2.
x=\frac{8}{-2}
Now solve the equation x=\frac{9±1}{-2} when ± is minus. Subtract 1 from 9.
x=-4
Divide 8 by -2.
-x^{2}-9x-20=-\left(x-\left(-5\right)\right)\left(x-\left(-4\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -5 for x_{1} and -4 for x_{2}.
-x^{2}-9x-20=-\left(x+5\right)\left(x+4\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
x ^ 2 +9x +20 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -9 rs = 20
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{9}{2} - u s = -\frac{9}{2} + u
Two numbers r and s sum up to -9 exactly when the average of the two numbers is \frac{1}{2}*-9 = -\frac{9}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{9}{2} - u) (-\frac{9}{2} + u) = 20
To solve for unknown quantity u, substitute these in the product equation rs = 20
\frac{81}{4} - u^2 = 20
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 20-\frac{81}{4} = -\frac{1}{4}
Simplify the expression by subtracting \frac{81}{4} on both sides
u^2 = \frac{1}{4} u = \pm\sqrt{\frac{1}{4}} = \pm \frac{1}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{9}{2} - \frac{1}{2} = -5 s = -\frac{9}{2} + \frac{1}{2} = -4
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.