Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-5 ab=-\left(-6\right)=6
Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx-6. To find a and b, set up a system to be solved.
-1,-6 -2,-3
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 6.
-1-6=-7 -2-3=-5
Calculate the sum for each pair.
a=-2 b=-3
The solution is the pair that gives sum -5.
\left(-x^{2}-2x\right)+\left(-3x-6\right)
Rewrite -x^{2}-5x-6 as \left(-x^{2}-2x\right)+\left(-3x-6\right).
x\left(-x-2\right)+3\left(-x-2\right)
Factor out x in the first and 3 in the second group.
\left(-x-2\right)\left(x+3\right)
Factor out common term -x-2 by using distributive property.
-x^{2}-5x-6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25+4\left(-6\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-5\right)±\sqrt{25-24}}{2\left(-1\right)}
Multiply 4 times -6.
x=\frac{-\left(-5\right)±\sqrt{1}}{2\left(-1\right)}
Add 25 to -24.
x=\frac{-\left(-5\right)±1}{2\left(-1\right)}
Take the square root of 1.
x=\frac{5±1}{2\left(-1\right)}
The opposite of -5 is 5.
x=\frac{5±1}{-2}
Multiply 2 times -1.
x=\frac{6}{-2}
Now solve the equation x=\frac{5±1}{-2} when ± is plus. Add 5 to 1.
x=-3
Divide 6 by -2.
x=\frac{4}{-2}
Now solve the equation x=\frac{5±1}{-2} when ± is minus. Subtract 1 from 5.
x=-2
Divide 4 by -2.
-x^{2}-5x-6=-\left(x-\left(-3\right)\right)\left(x-\left(-2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -3 for x_{1} and -2 for x_{2}.
-x^{2}-5x-6=-\left(x+3\right)\left(x+2\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
x ^ 2 +5x +6 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -5 rs = 6
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{5}{2} - u s = -\frac{5}{2} + u
Two numbers r and s sum up to -5 exactly when the average of the two numbers is \frac{1}{2}*-5 = -\frac{5}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{5}{2} - u) (-\frac{5}{2} + u) = 6
To solve for unknown quantity u, substitute these in the product equation rs = 6
\frac{25}{4} - u^2 = 6
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 6-\frac{25}{4} = -\frac{1}{4}
Simplify the expression by subtracting \frac{25}{4} on both sides
u^2 = \frac{1}{4} u = \pm\sqrt{\frac{1}{4}} = \pm \frac{1}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{5}{2} - \frac{1}{2} = -3 s = -\frac{5}{2} + \frac{1}{2} = -2
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.