Solve for x (complex solution)
x=\frac{-3+i\sqrt{23}}{4}\approx -0.75+1.198957881i
x=\frac{-i\sqrt{23}-3}{4}\approx -0.75-1.198957881i
Graph
Share
Copied to clipboard
-x^{2}-1.5x+5=7
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-x^{2}-1.5x+5-7=7-7
Subtract 7 from both sides of the equation.
-x^{2}-1.5x+5-7=0
Subtracting 7 from itself leaves 0.
-x^{2}-1.5x-2=0
Subtract 7 from 5.
x=\frac{-\left(-1.5\right)±\sqrt{\left(-1.5\right)^{2}-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -1.5 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1.5\right)±\sqrt{2.25-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
Square -1.5 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-1.5\right)±\sqrt{2.25+4\left(-2\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-1.5\right)±\sqrt{2.25-8}}{2\left(-1\right)}
Multiply 4 times -2.
x=\frac{-\left(-1.5\right)±\sqrt{-5.75}}{2\left(-1\right)}
Add 2.25 to -8.
x=\frac{-\left(-1.5\right)±\frac{\sqrt{23}i}{2}}{2\left(-1\right)}
Take the square root of -5.75.
x=\frac{1.5±\frac{\sqrt{23}i}{2}}{2\left(-1\right)}
The opposite of -1.5 is 1.5.
x=\frac{1.5±\frac{\sqrt{23}i}{2}}{-2}
Multiply 2 times -1.
x=\frac{3+\sqrt{23}i}{-2\times 2}
Now solve the equation x=\frac{1.5±\frac{\sqrt{23}i}{2}}{-2} when ± is plus. Add 1.5 to \frac{i\sqrt{23}}{2}.
x=\frac{-\sqrt{23}i-3}{4}
Divide \frac{3+i\sqrt{23}}{2} by -2.
x=\frac{-\sqrt{23}i+3}{-2\times 2}
Now solve the equation x=\frac{1.5±\frac{\sqrt{23}i}{2}}{-2} when ± is minus. Subtract \frac{i\sqrt{23}}{2} from 1.5.
x=\frac{-3+\sqrt{23}i}{4}
Divide \frac{3-i\sqrt{23}}{2} by -2.
x=\frac{-\sqrt{23}i-3}{4} x=\frac{-3+\sqrt{23}i}{4}
The equation is now solved.
-x^{2}-1.5x+5=7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}-1.5x+5-5=7-5
Subtract 5 from both sides of the equation.
-x^{2}-1.5x=7-5
Subtracting 5 from itself leaves 0.
-x^{2}-1.5x=2
Subtract 5 from 7.
\frac{-x^{2}-1.5x}{-1}=\frac{2}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{1.5}{-1}\right)x=\frac{2}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+1.5x=\frac{2}{-1}
Divide -1.5 by -1.
x^{2}+1.5x=-2
Divide 2 by -1.
x^{2}+1.5x+0.75^{2}=-2+0.75^{2}
Divide 1.5, the coefficient of the x term, by 2 to get 0.75. Then add the square of 0.75 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+1.5x+0.5625=-2+0.5625
Square 0.75 by squaring both the numerator and the denominator of the fraction.
x^{2}+1.5x+0.5625=-1.4375
Add -2 to 0.5625.
\left(x+0.75\right)^{2}=-1.4375
Factor x^{2}+1.5x+0.5625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+0.75\right)^{2}}=\sqrt{-1.4375}
Take the square root of both sides of the equation.
x+0.75=\frac{\sqrt{23}i}{4} x+0.75=-\frac{\sqrt{23}i}{4}
Simplify.
x=\frac{-3+\sqrt{23}i}{4} x=\frac{-\sqrt{23}i-3}{4}
Subtract 0.75 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}