Solve for x
x=\sqrt{1930}+45\approx 88.931765273
x=45-\sqrt{1930}\approx 1.068234727
Graph
Share
Copied to clipboard
-x^{2}+90x-75=20
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-x^{2}+90x-75-20=20-20
Subtract 20 from both sides of the equation.
-x^{2}+90x-75-20=0
Subtracting 20 from itself leaves 0.
-x^{2}+90x-95=0
Subtract 20 from -75.
x=\frac{-90±\sqrt{90^{2}-4\left(-1\right)\left(-95\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 90 for b, and -95 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-90±\sqrt{8100-4\left(-1\right)\left(-95\right)}}{2\left(-1\right)}
Square 90.
x=\frac{-90±\sqrt{8100+4\left(-95\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-90±\sqrt{8100-380}}{2\left(-1\right)}
Multiply 4 times -95.
x=\frac{-90±\sqrt{7720}}{2\left(-1\right)}
Add 8100 to -380.
x=\frac{-90±2\sqrt{1930}}{2\left(-1\right)}
Take the square root of 7720.
x=\frac{-90±2\sqrt{1930}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{1930}-90}{-2}
Now solve the equation x=\frac{-90±2\sqrt{1930}}{-2} when ± is plus. Add -90 to 2\sqrt{1930}.
x=45-\sqrt{1930}
Divide -90+2\sqrt{1930} by -2.
x=\frac{-2\sqrt{1930}-90}{-2}
Now solve the equation x=\frac{-90±2\sqrt{1930}}{-2} when ± is minus. Subtract 2\sqrt{1930} from -90.
x=\sqrt{1930}+45
Divide -90-2\sqrt{1930} by -2.
x=45-\sqrt{1930} x=\sqrt{1930}+45
The equation is now solved.
-x^{2}+90x-75=20
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}+90x-75-\left(-75\right)=20-\left(-75\right)
Add 75 to both sides of the equation.
-x^{2}+90x=20-\left(-75\right)
Subtracting -75 from itself leaves 0.
-x^{2}+90x=95
Subtract -75 from 20.
\frac{-x^{2}+90x}{-1}=\frac{95}{-1}
Divide both sides by -1.
x^{2}+\frac{90}{-1}x=\frac{95}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-90x=\frac{95}{-1}
Divide 90 by -1.
x^{2}-90x=-95
Divide 95 by -1.
x^{2}-90x+\left(-45\right)^{2}=-95+\left(-45\right)^{2}
Divide -90, the coefficient of the x term, by 2 to get -45. Then add the square of -45 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-90x+2025=-95+2025
Square -45.
x^{2}-90x+2025=1930
Add -95 to 2025.
\left(x-45\right)^{2}=1930
Factor x^{2}-90x+2025. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-45\right)^{2}}=\sqrt{1930}
Take the square root of both sides of the equation.
x-45=\sqrt{1930} x-45=-\sqrt{1930}
Simplify.
x=\sqrt{1930}+45 x=45-\sqrt{1930}
Add 45 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}