Solve for x
x=\sqrt{6}+3\approx 5.449489743
x=3-\sqrt{6}\approx 0.550510257
Graph
Share
Copied to clipboard
-x^{2}+9x-3-3x=0
Subtract 3x from both sides.
-x^{2}+6x-3=0
Combine 9x and -3x to get 6x.
x=\frac{-6±\sqrt{6^{2}-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 6 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
Square 6.
x=\frac{-6±\sqrt{36+4\left(-3\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-6±\sqrt{36-12}}{2\left(-1\right)}
Multiply 4 times -3.
x=\frac{-6±\sqrt{24}}{2\left(-1\right)}
Add 36 to -12.
x=\frac{-6±2\sqrt{6}}{2\left(-1\right)}
Take the square root of 24.
x=\frac{-6±2\sqrt{6}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{6}-6}{-2}
Now solve the equation x=\frac{-6±2\sqrt{6}}{-2} when ± is plus. Add -6 to 2\sqrt{6}.
x=3-\sqrt{6}
Divide -6+2\sqrt{6} by -2.
x=\frac{-2\sqrt{6}-6}{-2}
Now solve the equation x=\frac{-6±2\sqrt{6}}{-2} when ± is minus. Subtract 2\sqrt{6} from -6.
x=\sqrt{6}+3
Divide -6-2\sqrt{6} by -2.
x=3-\sqrt{6} x=\sqrt{6}+3
The equation is now solved.
-x^{2}+9x-3-3x=0
Subtract 3x from both sides.
-x^{2}+6x-3=0
Combine 9x and -3x to get 6x.
-x^{2}+6x=3
Add 3 to both sides. Anything plus zero gives itself.
\frac{-x^{2}+6x}{-1}=\frac{3}{-1}
Divide both sides by -1.
x^{2}+\frac{6}{-1}x=\frac{3}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-6x=\frac{3}{-1}
Divide 6 by -1.
x^{2}-6x=-3
Divide 3 by -1.
x^{2}-6x+\left(-3\right)^{2}=-3+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-3+9
Square -3.
x^{2}-6x+9=6
Add -3 to 9.
\left(x-3\right)^{2}=6
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{6}
Take the square root of both sides of the equation.
x-3=\sqrt{6} x-3=-\sqrt{6}
Simplify.
x=\sqrt{6}+3 x=3-\sqrt{6}
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}