Solve for x
x=16
x=24
Graph
Share
Copied to clipboard
-x^{2}+40x-384=0
Subtract 384 from both sides.
a+b=40 ab=-\left(-384\right)=384
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-384. To find a and b, set up a system to be solved.
1,384 2,192 3,128 4,96 6,64 8,48 12,32 16,24
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 384.
1+384=385 2+192=194 3+128=131 4+96=100 6+64=70 8+48=56 12+32=44 16+24=40
Calculate the sum for each pair.
a=24 b=16
The solution is the pair that gives sum 40.
\left(-x^{2}+24x\right)+\left(16x-384\right)
Rewrite -x^{2}+40x-384 as \left(-x^{2}+24x\right)+\left(16x-384\right).
-x\left(x-24\right)+16\left(x-24\right)
Factor out -x in the first and 16 in the second group.
\left(x-24\right)\left(-x+16\right)
Factor out common term x-24 by using distributive property.
x=24 x=16
To find equation solutions, solve x-24=0 and -x+16=0.
-x^{2}+40x=384
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-x^{2}+40x-384=384-384
Subtract 384 from both sides of the equation.
-x^{2}+40x-384=0
Subtracting 384 from itself leaves 0.
x=\frac{-40±\sqrt{40^{2}-4\left(-1\right)\left(-384\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 40 for b, and -384 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±\sqrt{1600-4\left(-1\right)\left(-384\right)}}{2\left(-1\right)}
Square 40.
x=\frac{-40±\sqrt{1600+4\left(-384\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-40±\sqrt{1600-1536}}{2\left(-1\right)}
Multiply 4 times -384.
x=\frac{-40±\sqrt{64}}{2\left(-1\right)}
Add 1600 to -1536.
x=\frac{-40±8}{2\left(-1\right)}
Take the square root of 64.
x=\frac{-40±8}{-2}
Multiply 2 times -1.
x=-\frac{32}{-2}
Now solve the equation x=\frac{-40±8}{-2} when ± is plus. Add -40 to 8.
x=16
Divide -32 by -2.
x=-\frac{48}{-2}
Now solve the equation x=\frac{-40±8}{-2} when ± is minus. Subtract 8 from -40.
x=24
Divide -48 by -2.
x=16 x=24
The equation is now solved.
-x^{2}+40x=384
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+40x}{-1}=\frac{384}{-1}
Divide both sides by -1.
x^{2}+\frac{40}{-1}x=\frac{384}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-40x=\frac{384}{-1}
Divide 40 by -1.
x^{2}-40x=-384
Divide 384 by -1.
x^{2}-40x+\left(-20\right)^{2}=-384+\left(-20\right)^{2}
Divide -40, the coefficient of the x term, by 2 to get -20. Then add the square of -20 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-40x+400=-384+400
Square -20.
x^{2}-40x+400=16
Add -384 to 400.
\left(x-20\right)^{2}=16
Factor x^{2}-40x+400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-20\right)^{2}}=\sqrt{16}
Take the square root of both sides of the equation.
x-20=4 x-20=-4
Simplify.
x=24 x=16
Add 20 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}