Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+4x=9
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-x^{2}+4x-9=9-9
Subtract 9 from both sides of the equation.
-x^{2}+4x-9=0
Subtracting 9 from itself leaves 0.
x=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-9\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 4 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-1\right)\left(-9\right)}}{2\left(-1\right)}
Square 4.
x=\frac{-4±\sqrt{16+4\left(-9\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-4±\sqrt{16-36}}{2\left(-1\right)}
Multiply 4 times -9.
x=\frac{-4±\sqrt{-20}}{2\left(-1\right)}
Add 16 to -36.
x=\frac{-4±2\sqrt{5}i}{2\left(-1\right)}
Take the square root of -20.
x=\frac{-4±2\sqrt{5}i}{-2}
Multiply 2 times -1.
x=\frac{-4+2\sqrt{5}i}{-2}
Now solve the equation x=\frac{-4±2\sqrt{5}i}{-2} when ± is plus. Add -4 to 2i\sqrt{5}.
x=-\sqrt{5}i+2
Divide -4+2i\sqrt{5} by -2.
x=\frac{-2\sqrt{5}i-4}{-2}
Now solve the equation x=\frac{-4±2\sqrt{5}i}{-2} when ± is minus. Subtract 2i\sqrt{5} from -4.
x=2+\sqrt{5}i
Divide -4-2i\sqrt{5} by -2.
x=-\sqrt{5}i+2 x=2+\sqrt{5}i
The equation is now solved.
-x^{2}+4x=9
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+4x}{-1}=\frac{9}{-1}
Divide both sides by -1.
x^{2}+\frac{4}{-1}x=\frac{9}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-4x=\frac{9}{-1}
Divide 4 by -1.
x^{2}-4x=-9
Divide 9 by -1.
x^{2}-4x+\left(-2\right)^{2}=-9+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-9+4
Square -2.
x^{2}-4x+4=-5
Add -9 to 4.
\left(x-2\right)^{2}=-5
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-5}
Take the square root of both sides of the equation.
x-2=\sqrt{5}i x-2=-\sqrt{5}i
Simplify.
x=2+\sqrt{5}i x=-\sqrt{5}i+2
Add 2 to both sides of the equation.