Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+20x-1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-20±\sqrt{20^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{400-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Square 20.
x=\frac{-20±\sqrt{400+4\left(-1\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-20±\sqrt{400-4}}{2\left(-1\right)}
Multiply 4 times -1.
x=\frac{-20±\sqrt{396}}{2\left(-1\right)}
Add 400 to -4.
x=\frac{-20±6\sqrt{11}}{2\left(-1\right)}
Take the square root of 396.
x=\frac{-20±6\sqrt{11}}{-2}
Multiply 2 times -1.
x=\frac{6\sqrt{11}-20}{-2}
Now solve the equation x=\frac{-20±6\sqrt{11}}{-2} when ± is plus. Add -20 to 6\sqrt{11}.
x=10-3\sqrt{11}
Divide -20+6\sqrt{11} by -2.
x=\frac{-6\sqrt{11}-20}{-2}
Now solve the equation x=\frac{-20±6\sqrt{11}}{-2} when ± is minus. Subtract 6\sqrt{11} from -20.
x=3\sqrt{11}+10
Divide -20-6\sqrt{11} by -2.
-x^{2}+20x-1=-\left(x-\left(10-3\sqrt{11}\right)\right)\left(x-\left(3\sqrt{11}+10\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 10-3\sqrt{11} for x_{1} and 10+3\sqrt{11} for x_{2}.
x ^ 2 -20x +1 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 20 rs = 1
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 10 - u s = 10 + u
Two numbers r and s sum up to 20 exactly when the average of the two numbers is \frac{1}{2}*20 = 10. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(10 - u) (10 + u) = 1
To solve for unknown quantity u, substitute these in the product equation rs = 1
100 - u^2 = 1
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 1-100 = -99
Simplify the expression by subtracting 100 on both sides
u^2 = 99 u = \pm\sqrt{99} = \pm \sqrt{99}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =10 - \sqrt{99} = 0.050 s = 10 + \sqrt{99} = 19.950
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.