Solve for x
x = \frac{\sqrt{355} + 13}{8} \approx 3.98018046
x=\frac{13-\sqrt{355}}{8}\approx -0.73018046
Graph
Share
Copied to clipboard
-x^{2}+2x+3=-\left(x+\frac{9}{4}\right)^{2}+2x^{2}+\frac{9}{4}
Multiply x and x to get x^{2}.
-x^{2}+2x+3=-\left(x^{2}+\frac{9}{2}x+\frac{81}{16}\right)+2x^{2}+\frac{9}{4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+\frac{9}{4}\right)^{2}.
-x^{2}+2x+3=-x^{2}-\frac{9}{2}x-\frac{81}{16}+2x^{2}+\frac{9}{4}
To find the opposite of x^{2}+\frac{9}{2}x+\frac{81}{16}, find the opposite of each term.
-x^{2}+2x+3=x^{2}-\frac{9}{2}x-\frac{81}{16}+\frac{9}{4}
Combine -x^{2} and 2x^{2} to get x^{2}.
-x^{2}+2x+3=x^{2}-\frac{9}{2}x-\frac{45}{16}
Add -\frac{81}{16} and \frac{9}{4} to get -\frac{45}{16}.
-x^{2}+2x+3-x^{2}=-\frac{9}{2}x-\frac{45}{16}
Subtract x^{2} from both sides.
-x^{2}+2x+3-x^{2}+\frac{9}{2}x=-\frac{45}{16}
Add \frac{9}{2}x to both sides.
-x^{2}+\frac{13}{2}x+3-x^{2}=-\frac{45}{16}
Combine 2x and \frac{9}{2}x to get \frac{13}{2}x.
-x^{2}+\frac{13}{2}x+3-x^{2}+\frac{45}{16}=0
Add \frac{45}{16} to both sides.
-x^{2}+\frac{13}{2}x+\frac{93}{16}-x^{2}=0
Add 3 and \frac{45}{16} to get \frac{93}{16}.
-2x^{2}+\frac{13}{2}x+\frac{93}{16}=0
Combine -x^{2} and -x^{2} to get -2x^{2}.
x=\frac{-\frac{13}{2}±\sqrt{\left(\frac{13}{2}\right)^{2}-4\left(-2\right)\times \frac{93}{16}}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, \frac{13}{2} for b, and \frac{93}{16} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{13}{2}±\sqrt{\frac{169}{4}-4\left(-2\right)\times \frac{93}{16}}}{2\left(-2\right)}
Square \frac{13}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{13}{2}±\sqrt{\frac{169}{4}+8\times \frac{93}{16}}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\frac{13}{2}±\sqrt{\frac{169}{4}+\frac{93}{2}}}{2\left(-2\right)}
Multiply 8 times \frac{93}{16}.
x=\frac{-\frac{13}{2}±\sqrt{\frac{355}{4}}}{2\left(-2\right)}
Add \frac{169}{4} to \frac{93}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{13}{2}±\frac{\sqrt{355}}{2}}{2\left(-2\right)}
Take the square root of \frac{355}{4}.
x=\frac{-\frac{13}{2}±\frac{\sqrt{355}}{2}}{-4}
Multiply 2 times -2.
x=\frac{\sqrt{355}-13}{-4\times 2}
Now solve the equation x=\frac{-\frac{13}{2}±\frac{\sqrt{355}}{2}}{-4} when ± is plus. Add -\frac{13}{2} to \frac{\sqrt{355}}{2}.
x=\frac{13-\sqrt{355}}{8}
Divide \frac{-13+\sqrt{355}}{2} by -4.
x=\frac{-\sqrt{355}-13}{-4\times 2}
Now solve the equation x=\frac{-\frac{13}{2}±\frac{\sqrt{355}}{2}}{-4} when ± is minus. Subtract \frac{\sqrt{355}}{2} from -\frac{13}{2}.
x=\frac{\sqrt{355}+13}{8}
Divide \frac{-13-\sqrt{355}}{2} by -4.
x=\frac{13-\sqrt{355}}{8} x=\frac{\sqrt{355}+13}{8}
The equation is now solved.
-x^{2}+2x+3=-\left(x+\frac{9}{4}\right)^{2}+2x^{2}+\frac{9}{4}
Multiply x and x to get x^{2}.
-x^{2}+2x+3=-\left(x^{2}+\frac{9}{2}x+\frac{81}{16}\right)+2x^{2}+\frac{9}{4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+\frac{9}{4}\right)^{2}.
-x^{2}+2x+3=-x^{2}-\frac{9}{2}x-\frac{81}{16}+2x^{2}+\frac{9}{4}
To find the opposite of x^{2}+\frac{9}{2}x+\frac{81}{16}, find the opposite of each term.
-x^{2}+2x+3=x^{2}-\frac{9}{2}x-\frac{81}{16}+\frac{9}{4}
Combine -x^{2} and 2x^{2} to get x^{2}.
-x^{2}+2x+3=x^{2}-\frac{9}{2}x-\frac{45}{16}
Add -\frac{81}{16} and \frac{9}{4} to get -\frac{45}{16}.
-x^{2}+2x+3-x^{2}=-\frac{9}{2}x-\frac{45}{16}
Subtract x^{2} from both sides.
-x^{2}+2x+3-x^{2}+\frac{9}{2}x=-\frac{45}{16}
Add \frac{9}{2}x to both sides.
-x^{2}+\frac{13}{2}x+3-x^{2}=-\frac{45}{16}
Combine 2x and \frac{9}{2}x to get \frac{13}{2}x.
-x^{2}+\frac{13}{2}x-x^{2}=-\frac{45}{16}-3
Subtract 3 from both sides.
-x^{2}+\frac{13}{2}x-x^{2}=-\frac{93}{16}
Subtract 3 from -\frac{45}{16} to get -\frac{93}{16}.
-2x^{2}+\frac{13}{2}x=-\frac{93}{16}
Combine -x^{2} and -x^{2} to get -2x^{2}.
\frac{-2x^{2}+\frac{13}{2}x}{-2}=-\frac{\frac{93}{16}}{-2}
Divide both sides by -2.
x^{2}+\frac{\frac{13}{2}}{-2}x=-\frac{\frac{93}{16}}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{13}{4}x=-\frac{\frac{93}{16}}{-2}
Divide \frac{13}{2} by -2.
x^{2}-\frac{13}{4}x=\frac{93}{32}
Divide -\frac{93}{16} by -2.
x^{2}-\frac{13}{4}x+\left(-\frac{13}{8}\right)^{2}=\frac{93}{32}+\left(-\frac{13}{8}\right)^{2}
Divide -\frac{13}{4}, the coefficient of the x term, by 2 to get -\frac{13}{8}. Then add the square of -\frac{13}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{13}{4}x+\frac{169}{64}=\frac{93}{32}+\frac{169}{64}
Square -\frac{13}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{13}{4}x+\frac{169}{64}=\frac{355}{64}
Add \frac{93}{32} to \frac{169}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{8}\right)^{2}=\frac{355}{64}
Factor x^{2}-\frac{13}{4}x+\frac{169}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{8}\right)^{2}}=\sqrt{\frac{355}{64}}
Take the square root of both sides of the equation.
x-\frac{13}{8}=\frac{\sqrt{355}}{8} x-\frac{13}{8}=-\frac{\sqrt{355}}{8}
Simplify.
x=\frac{\sqrt{355}+13}{8} x=\frac{13-\sqrt{355}}{8}
Add \frac{13}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}