Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}-2x+3+8
Combine 2x and -4x to get -2x.
-x^{2}-2x+11
Add 3 and 8 to get 11.
factor(-x^{2}-2x+3+8)
Combine 2x and -4x to get -2x.
factor(-x^{2}-2x+11)
Add 3 and 8 to get 11.
-x^{2}-2x+11=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 11}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 11}}{2\left(-1\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+4\times 11}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-2\right)±\sqrt{4+44}}{2\left(-1\right)}
Multiply 4 times 11.
x=\frac{-\left(-2\right)±\sqrt{48}}{2\left(-1\right)}
Add 4 to 44.
x=\frac{-\left(-2\right)±4\sqrt{3}}{2\left(-1\right)}
Take the square root of 48.
x=\frac{2±4\sqrt{3}}{2\left(-1\right)}
The opposite of -2 is 2.
x=\frac{2±4\sqrt{3}}{-2}
Multiply 2 times -1.
x=\frac{4\sqrt{3}+2}{-2}
Now solve the equation x=\frac{2±4\sqrt{3}}{-2} when ± is plus. Add 2 to 4\sqrt{3}.
x=-2\sqrt{3}-1
Divide 2+4\sqrt{3} by -2.
x=\frac{2-4\sqrt{3}}{-2}
Now solve the equation x=\frac{2±4\sqrt{3}}{-2} when ± is minus. Subtract 4\sqrt{3} from 2.
x=2\sqrt{3}-1
Divide 2-4\sqrt{3} by -2.
-x^{2}-2x+11=-\left(x-\left(-2\sqrt{3}-1\right)\right)\left(x-\left(2\sqrt{3}-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -1-2\sqrt{3} for x_{1} and -1+2\sqrt{3} for x_{2}.