Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+2x+1=\frac{1}{3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-x^{2}+2x+1-\frac{1}{3}=\frac{1}{3}-\frac{1}{3}
Subtract \frac{1}{3} from both sides of the equation.
-x^{2}+2x+1-\frac{1}{3}=0
Subtracting \frac{1}{3} from itself leaves 0.
-x^{2}+2x+\frac{2}{3}=0
Subtract \frac{1}{3} from 1.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times \frac{2}{3}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 2 for b, and \frac{2}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times \frac{2}{3}}}{2\left(-1\right)}
Square 2.
x=\frac{-2±\sqrt{4+4\times \frac{2}{3}}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-2±\sqrt{4+\frac{8}{3}}}{2\left(-1\right)}
Multiply 4 times \frac{2}{3}.
x=\frac{-2±\sqrt{\frac{20}{3}}}{2\left(-1\right)}
Add 4 to \frac{8}{3}.
x=\frac{-2±\frac{2\sqrt{15}}{3}}{2\left(-1\right)}
Take the square root of \frac{20}{3}.
x=\frac{-2±\frac{2\sqrt{15}}{3}}{-2}
Multiply 2 times -1.
x=\frac{\frac{2\sqrt{15}}{3}-2}{-2}
Now solve the equation x=\frac{-2±\frac{2\sqrt{15}}{3}}{-2} when ± is plus. Add -2 to \frac{2\sqrt{15}}{3}.
x=-\frac{\sqrt{15}}{3}+1
Divide -2+\frac{2\sqrt{15}}{3} by -2.
x=\frac{-\frac{2\sqrt{15}}{3}-2}{-2}
Now solve the equation x=\frac{-2±\frac{2\sqrt{15}}{3}}{-2} when ± is minus. Subtract \frac{2\sqrt{15}}{3} from -2.
x=\frac{\sqrt{15}}{3}+1
Divide -2-\frac{2\sqrt{15}}{3} by -2.
x=-\frac{\sqrt{15}}{3}+1 x=\frac{\sqrt{15}}{3}+1
The equation is now solved.
-x^{2}+2x+1=\frac{1}{3}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}+2x+1-1=\frac{1}{3}-1
Subtract 1 from both sides of the equation.
-x^{2}+2x=\frac{1}{3}-1
Subtracting 1 from itself leaves 0.
-x^{2}+2x=-\frac{2}{3}
Subtract 1 from \frac{1}{3}.
\frac{-x^{2}+2x}{-1}=-\frac{\frac{2}{3}}{-1}
Divide both sides by -1.
x^{2}+\frac{2}{-1}x=-\frac{\frac{2}{3}}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-2x=-\frac{\frac{2}{3}}{-1}
Divide 2 by -1.
x^{2}-2x=\frac{2}{3}
Divide -\frac{2}{3} by -1.
x^{2}-2x+1=\frac{2}{3}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{5}{3}
Add \frac{2}{3} to 1.
\left(x-1\right)^{2}=\frac{5}{3}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{5}{3}}
Take the square root of both sides of the equation.
x-1=\frac{\sqrt{15}}{3} x-1=-\frac{\sqrt{15}}{3}
Simplify.
x=\frac{\sqrt{15}}{3}+1 x=-\frac{\sqrt{15}}{3}+1
Add 1 to both sides of the equation.