Solve for x
x=\sqrt{23}+5\approx 9.795831523
x=5-\sqrt{23}\approx 0.204168477
Graph
Share
Copied to clipboard
-x^{2}+18x+4-x^{2}=-2x+8
Subtract x^{2} from both sides.
-x^{2}+18x+4-x^{2}+2x=8
Add 2x to both sides.
-x^{2}+20x+4-x^{2}=8
Combine 18x and 2x to get 20x.
-x^{2}+20x+4-x^{2}-8=0
Subtract 8 from both sides.
-x^{2}+20x-4-x^{2}=0
Subtract 8 from 4 to get -4.
-2x^{2}+20x-4=0
Combine -x^{2} and -x^{2} to get -2x^{2}.
x=\frac{-20±\sqrt{20^{2}-4\left(-2\right)\left(-4\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 20 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\left(-2\right)\left(-4\right)}}{2\left(-2\right)}
Square 20.
x=\frac{-20±\sqrt{400+8\left(-4\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-20±\sqrt{400-32}}{2\left(-2\right)}
Multiply 8 times -4.
x=\frac{-20±\sqrt{368}}{2\left(-2\right)}
Add 400 to -32.
x=\frac{-20±4\sqrt{23}}{2\left(-2\right)}
Take the square root of 368.
x=\frac{-20±4\sqrt{23}}{-4}
Multiply 2 times -2.
x=\frac{4\sqrt{23}-20}{-4}
Now solve the equation x=\frac{-20±4\sqrt{23}}{-4} when ± is plus. Add -20 to 4\sqrt{23}.
x=5-\sqrt{23}
Divide -20+4\sqrt{23} by -4.
x=\frac{-4\sqrt{23}-20}{-4}
Now solve the equation x=\frac{-20±4\sqrt{23}}{-4} when ± is minus. Subtract 4\sqrt{23} from -20.
x=\sqrt{23}+5
Divide -20-4\sqrt{23} by -4.
x=5-\sqrt{23} x=\sqrt{23}+5
The equation is now solved.
-x^{2}+18x+4-x^{2}=-2x+8
Subtract x^{2} from both sides.
-x^{2}+18x+4-x^{2}+2x=8
Add 2x to both sides.
-x^{2}+20x+4-x^{2}=8
Combine 18x and 2x to get 20x.
-x^{2}+20x-x^{2}=8-4
Subtract 4 from both sides.
-x^{2}+20x-x^{2}=4
Subtract 4 from 8 to get 4.
-2x^{2}+20x=4
Combine -x^{2} and -x^{2} to get -2x^{2}.
\frac{-2x^{2}+20x}{-2}=\frac{4}{-2}
Divide both sides by -2.
x^{2}+\frac{20}{-2}x=\frac{4}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-10x=\frac{4}{-2}
Divide 20 by -2.
x^{2}-10x=-2
Divide 4 by -2.
x^{2}-10x+\left(-5\right)^{2}=-2+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-2+25
Square -5.
x^{2}-10x+25=23
Add -2 to 25.
\left(x-5\right)^{2}=23
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{23}
Take the square root of both sides of the equation.
x-5=\sqrt{23} x-5=-\sqrt{23}
Simplify.
x=\sqrt{23}+5 x=5-\sqrt{23}
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}