Solve for x
x=\frac{\sqrt{77151256822196669211320058967422815898441}}{1312855786189878518926540800000}+\frac{1}{3226728304266444800000}\approx 2.115701919 \cdot 10^{-10}
x=-\frac{\sqrt{77151256822196669211320058967422815898441}}{1312855786189878518926540800000}+\frac{1}{3226728304266444800000}\approx -2.115701919 \cdot 10^{-10}
Graph
Share
Copied to clipboard
-x^{2}+\frac{1}{1613364152133222400000}x+7410^{-5}=0
Calculate 17440 to the power of -5 and get \frac{1}{1613364152133222400000}.
-x^{2}+\frac{1}{1613364152133222400000}x+\frac{1}{22340404891970100000}=0
Calculate 7410 to the power of -5 and get \frac{1}{22340404891970100000}.
x=\frac{-\frac{1}{1613364152133222400000}±\sqrt{\left(\frac{1}{1613364152133222400000}\right)^{2}-4\left(-1\right)\times \frac{1}{22340404891970100000}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, \frac{1}{1613364152133222400000} for b, and \frac{1}{22340404891970100000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{1613364152133222400000}±\sqrt{\frac{1}{2602943887388551592824557807861760000000000}-4\left(-1\right)\times \frac{1}{22340404891970100000}}}{2\left(-1\right)}
Square \frac{1}{1613364152133222400000} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1}{1613364152133222400000}±\sqrt{\frac{1}{2602943887388551592824557807861760000000000}+4\times \frac{1}{22340404891970100000}}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\frac{1}{1613364152133222400000}±\sqrt{\frac{1}{2602943887388551592824557807861760000000000}+\frac{1}{5585101222992525000}}}{2\left(-1\right)}
Multiply 4 times \frac{1}{22340404891970100000}.
x=\frac{-\frac{1}{1613364152133222400000}±\sqrt{\frac{104117755495542063712982535718519319701}{581508203553388670868992256558662048852748533760000000000}}}{2\left(-1\right)}
Add \frac{1}{2602943887388551592824557807861760000000000} to \frac{1}{5585101222992525000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{1}{1613364152133222400000}±\frac{\sqrt{77151256822196669211320058967422815898441}}{656427893094939259463270400000}}{2\left(-1\right)}
Take the square root of \frac{104117755495542063712982535718519319701}{581508203553388670868992256558662048852748533760000000000}.
x=\frac{-\frac{1}{1613364152133222400000}±\frac{\sqrt{77151256822196669211320058967422815898441}}{656427893094939259463270400000}}{-2}
Multiply 2 times -1.
x=\frac{\frac{\sqrt{77151256822196669211320058967422815898441}}{656427893094939259463270400000}-\frac{1}{1613364152133222400000}}{-2}
Now solve the equation x=\frac{-\frac{1}{1613364152133222400000}±\frac{\sqrt{77151256822196669211320058967422815898441}}{656427893094939259463270400000}}{-2} when ± is plus. Add -\frac{1}{1613364152133222400000} to \frac{\sqrt{77151256822196669211320058967422815898441}}{656427893094939259463270400000}.
x=-\frac{\sqrt{77151256822196669211320058967422815898441}}{1312855786189878518926540800000}+\frac{1}{3226728304266444800000}
Divide -\frac{1}{1613364152133222400000}+\frac{\sqrt{77151256822196669211320058967422815898441}}{656427893094939259463270400000} by -2.
x=\frac{-\frac{\sqrt{77151256822196669211320058967422815898441}}{656427893094939259463270400000}-\frac{1}{1613364152133222400000}}{-2}
Now solve the equation x=\frac{-\frac{1}{1613364152133222400000}±\frac{\sqrt{77151256822196669211320058967422815898441}}{656427893094939259463270400000}}{-2} when ± is minus. Subtract \frac{\sqrt{77151256822196669211320058967422815898441}}{656427893094939259463270400000} from -\frac{1}{1613364152133222400000}.
x=\frac{\sqrt{77151256822196669211320058967422815898441}}{1312855786189878518926540800000}+\frac{1}{3226728304266444800000}
Divide -\frac{1}{1613364152133222400000}-\frac{\sqrt{77151256822196669211320058967422815898441}}{656427893094939259463270400000} by -2.
x=-\frac{\sqrt{77151256822196669211320058967422815898441}}{1312855786189878518926540800000}+\frac{1}{3226728304266444800000} x=\frac{\sqrt{77151256822196669211320058967422815898441}}{1312855786189878518926540800000}+\frac{1}{3226728304266444800000}
The equation is now solved.
-x^{2}+\frac{1}{1613364152133222400000}x+7410^{-5}=0
Calculate 17440 to the power of -5 and get \frac{1}{1613364152133222400000}.
-x^{2}+\frac{1}{1613364152133222400000}x+\frac{1}{22340404891970100000}=0
Calculate 7410 to the power of -5 and get \frac{1}{22340404891970100000}.
-x^{2}+\frac{1}{1613364152133222400000}x=-\frac{1}{22340404891970100000}
Subtract \frac{1}{22340404891970100000} from both sides. Anything subtracted from zero gives its negation.
\frac{-x^{2}+\frac{1}{1613364152133222400000}x}{-1}=-\frac{\frac{1}{22340404891970100000}}{-1}
Divide both sides by -1.
x^{2}+\frac{\frac{1}{1613364152133222400000}}{-1}x=-\frac{\frac{1}{22340404891970100000}}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-\frac{1}{1613364152133222400000}x=-\frac{\frac{1}{22340404891970100000}}{-1}
Divide \frac{1}{1613364152133222400000} by -1.
x^{2}-\frac{1}{1613364152133222400000}x=\frac{1}{22340404891970100000}
Divide -\frac{1}{22340404891970100000} by -1.
x^{2}-\frac{1}{1613364152133222400000}x+\left(-\frac{1}{3226728304266444800000}\right)^{2}=\frac{1}{22340404891970100000}+\left(-\frac{1}{3226728304266444800000}\right)^{2}
Divide -\frac{1}{1613364152133222400000}, the coefficient of the x term, by 2 to get -\frac{1}{3226728304266444800000}. Then add the square of -\frac{1}{3226728304266444800000} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{1613364152133222400000}x+\frac{1}{10411775549554206371298231231447040000000000}=\frac{1}{22340404891970100000}+\frac{1}{10411775549554206371298231231447040000000000}
Square -\frac{1}{3226728304266444800000} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{1613364152133222400000}x+\frac{1}{10411775549554206371298231231447040000000000}=\frac{104117755495542063712982535718519319701}{2326032814213554683475969026234648195410994135040000000000}
Add \frac{1}{22340404891970100000} to \frac{1}{10411775549554206371298231231447040000000000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{3226728304266444800000}\right)^{2}=\frac{104117755495542063712982535718519319701}{2326032814213554683475969026234648195410994135040000000000}
Factor x^{2}-\frac{1}{1613364152133222400000}x+\frac{1}{10411775549554206371298231231447040000000000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3226728304266444800000}\right)^{2}}=\sqrt{\frac{104117755495542063712982535718519319701}{2326032814213554683475969026234648195410994135040000000000}}
Take the square root of both sides of the equation.
x-\frac{1}{3226728304266444800000}=\frac{\sqrt{77151256822196669211320058967422815898441}}{1312855786189878518926540800000} x-\frac{1}{3226728304266444800000}=-\frac{\sqrt{77151256822196669211320058967422815898441}}{1312855786189878518926540800000}
Simplify.
x=\frac{\sqrt{77151256822196669211320058967422815898441}}{1312855786189878518926540800000}+\frac{1}{3226728304266444800000} x=-\frac{\sqrt{77151256822196669211320058967422815898441}}{1312855786189878518926540800000}+\frac{1}{3226728304266444800000}
Add \frac{1}{3226728304266444800000} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}