Solve for x
x=5
x=-\frac{1}{3}\approx -0.333333333
Graph
Share
Copied to clipboard
-x^{2}+14x-13=2x^{2}-18
Combine 6x and -6x to get 0.
-x^{2}+14x-13-2x^{2}=-18
Subtract 2x^{2} from both sides.
-x^{2}+14x-13-2x^{2}+18=0
Add 18 to both sides.
-x^{2}+14x+5-2x^{2}=0
Add -13 and 18 to get 5.
-3x^{2}+14x+5=0
Combine -x^{2} and -2x^{2} to get -3x^{2}.
a+b=14 ab=-3\times 5=-15
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx+5. To find a and b, set up a system to be solved.
-1,15 -3,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -15.
-1+15=14 -3+5=2
Calculate the sum for each pair.
a=15 b=-1
The solution is the pair that gives sum 14.
\left(-3x^{2}+15x\right)+\left(-x+5\right)
Rewrite -3x^{2}+14x+5 as \left(-3x^{2}+15x\right)+\left(-x+5\right).
3x\left(-x+5\right)-x+5
Factor out 3x in -3x^{2}+15x.
\left(-x+5\right)\left(3x+1\right)
Factor out common term -x+5 by using distributive property.
x=5 x=-\frac{1}{3}
To find equation solutions, solve -x+5=0 and 3x+1=0.
-x^{2}+14x-13=2x^{2}-18
Combine 6x and -6x to get 0.
-x^{2}+14x-13-2x^{2}=-18
Subtract 2x^{2} from both sides.
-x^{2}+14x-13-2x^{2}+18=0
Add 18 to both sides.
-x^{2}+14x+5-2x^{2}=0
Add -13 and 18 to get 5.
-3x^{2}+14x+5=0
Combine -x^{2} and -2x^{2} to get -3x^{2}.
x=\frac{-14±\sqrt{14^{2}-4\left(-3\right)\times 5}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 14 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\left(-3\right)\times 5}}{2\left(-3\right)}
Square 14.
x=\frac{-14±\sqrt{196+12\times 5}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-14±\sqrt{196+60}}{2\left(-3\right)}
Multiply 12 times 5.
x=\frac{-14±\sqrt{256}}{2\left(-3\right)}
Add 196 to 60.
x=\frac{-14±16}{2\left(-3\right)}
Take the square root of 256.
x=\frac{-14±16}{-6}
Multiply 2 times -3.
x=\frac{2}{-6}
Now solve the equation x=\frac{-14±16}{-6} when ± is plus. Add -14 to 16.
x=-\frac{1}{3}
Reduce the fraction \frac{2}{-6} to lowest terms by extracting and canceling out 2.
x=-\frac{30}{-6}
Now solve the equation x=\frac{-14±16}{-6} when ± is minus. Subtract 16 from -14.
x=5
Divide -30 by -6.
x=-\frac{1}{3} x=5
The equation is now solved.
-x^{2}+14x-13=2x^{2}-18
Combine 6x and -6x to get 0.
-x^{2}+14x-13-2x^{2}=-18
Subtract 2x^{2} from both sides.
-x^{2}+14x-2x^{2}=-18+13
Add 13 to both sides.
-x^{2}+14x-2x^{2}=-5
Add -18 and 13 to get -5.
-3x^{2}+14x=-5
Combine -x^{2} and -2x^{2} to get -3x^{2}.
\frac{-3x^{2}+14x}{-3}=-\frac{5}{-3}
Divide both sides by -3.
x^{2}+\frac{14}{-3}x=-\frac{5}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{14}{3}x=-\frac{5}{-3}
Divide 14 by -3.
x^{2}-\frac{14}{3}x=\frac{5}{3}
Divide -5 by -3.
x^{2}-\frac{14}{3}x+\left(-\frac{7}{3}\right)^{2}=\frac{5}{3}+\left(-\frac{7}{3}\right)^{2}
Divide -\frac{14}{3}, the coefficient of the x term, by 2 to get -\frac{7}{3}. Then add the square of -\frac{7}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{14}{3}x+\frac{49}{9}=\frac{5}{3}+\frac{49}{9}
Square -\frac{7}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{14}{3}x+\frac{49}{9}=\frac{64}{9}
Add \frac{5}{3} to \frac{49}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{3}\right)^{2}=\frac{64}{9}
Factor x^{2}-\frac{14}{3}x+\frac{49}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{3}\right)^{2}}=\sqrt{\frac{64}{9}}
Take the square root of both sides of the equation.
x-\frac{7}{3}=\frac{8}{3} x-\frac{7}{3}=-\frac{8}{3}
Simplify.
x=5 x=-\frac{1}{3}
Add \frac{7}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}