Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+\frac{5}{2}x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{5}{2}±\sqrt{\left(\frac{5}{2}\right)^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, \frac{5}{2} for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{5}{2}±\sqrt{\frac{25}{4}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{5}{2}±\sqrt{\frac{25}{4}+4\left(-1\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\frac{5}{2}±\sqrt{\frac{25}{4}-4}}{2\left(-1\right)}
Multiply 4 times -1.
x=\frac{-\frac{5}{2}±\sqrt{\frac{9}{4}}}{2\left(-1\right)}
Add \frac{25}{4} to -4.
x=\frac{-\frac{5}{2}±\frac{3}{2}}{2\left(-1\right)}
Take the square root of \frac{9}{4}.
x=\frac{-\frac{5}{2}±\frac{3}{2}}{-2}
Multiply 2 times -1.
x=-\frac{1}{-2}
Now solve the equation x=\frac{-\frac{5}{2}±\frac{3}{2}}{-2} when ± is plus. Add -\frac{5}{2} to \frac{3}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{1}{2}
Divide -1 by -2.
x=-\frac{4}{-2}
Now solve the equation x=\frac{-\frac{5}{2}±\frac{3}{2}}{-2} when ± is minus. Subtract \frac{3}{2} from -\frac{5}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=2
Divide -4 by -2.
x=\frac{1}{2} x=2
The equation is now solved.
-x^{2}+\frac{5}{2}x-1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}+\frac{5}{2}x-1-\left(-1\right)=-\left(-1\right)
Add 1 to both sides of the equation.
-x^{2}+\frac{5}{2}x=-\left(-1\right)
Subtracting -1 from itself leaves 0.
-x^{2}+\frac{5}{2}x=1
Subtract -1 from 0.
\frac{-x^{2}+\frac{5}{2}x}{-1}=\frac{1}{-1}
Divide both sides by -1.
x^{2}+\frac{\frac{5}{2}}{-1}x=\frac{1}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-\frac{5}{2}x=\frac{1}{-1}
Divide \frac{5}{2} by -1.
x^{2}-\frac{5}{2}x=-1
Divide 1 by -1.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=-1+\left(-\frac{5}{4}\right)^{2}
Divide -\frac{5}{2}, the coefficient of the x term, by 2 to get -\frac{5}{4}. Then add the square of -\frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{2}x+\frac{25}{16}=-1+\frac{25}{16}
Square -\frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{9}{16}
Add -1 to \frac{25}{16}.
\left(x-\frac{5}{4}\right)^{2}=\frac{9}{16}
Factor x^{2}-\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
x-\frac{5}{4}=\frac{3}{4} x-\frac{5}{4}=-\frac{3}{4}
Simplify.
x=2 x=\frac{1}{2}
Add \frac{5}{4} to both sides of the equation.