Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x-x^{2}=-x+\frac{3}{8}
Subtract x^{2} from both sides.
-x-x^{2}+x=\frac{3}{8}
Add x to both sides.
-x^{2}=\frac{3}{8}
Combine -x and x to get 0.
x^{2}=\frac{\frac{3}{8}}{-1}
Divide both sides by -1.
x^{2}=\frac{3}{8\left(-1\right)}
Express \frac{\frac{3}{8}}{-1} as a single fraction.
x^{2}=\frac{3}{-8}
Multiply 8 and -1 to get -8.
x^{2}=-\frac{3}{8}
Fraction \frac{3}{-8} can be rewritten as -\frac{3}{8} by extracting the negative sign.
x=\frac{\sqrt{6}i}{4} x=-\frac{\sqrt{6}i}{4}
The equation is now solved.
-x-x^{2}=-x+\frac{3}{8}
Subtract x^{2} from both sides.
-x-x^{2}+x=\frac{3}{8}
Add x to both sides.
-x-x^{2}+x-\frac{3}{8}=0
Subtract \frac{3}{8} from both sides.
-x^{2}-\frac{3}{8}=0
Combine -x and x to get 0.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\left(-\frac{3}{8}\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and -\frac{3}{8} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\left(-\frac{3}{8}\right)}}{2\left(-1\right)}
Square 0.
x=\frac{0±\sqrt{4\left(-\frac{3}{8}\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{0±\sqrt{-\frac{3}{2}}}{2\left(-1\right)}
Multiply 4 times -\frac{3}{8}.
x=\frac{0±\frac{\sqrt{6}i}{2}}{2\left(-1\right)}
Take the square root of -\frac{3}{2}.
x=\frac{0±\frac{\sqrt{6}i}{2}}{-2}
Multiply 2 times -1.
x=-\frac{\sqrt{6}i}{4}
Now solve the equation x=\frac{0±\frac{\sqrt{6}i}{2}}{-2} when ± is plus.
x=\frac{\sqrt{6}i}{4}
Now solve the equation x=\frac{0±\frac{\sqrt{6}i}{2}}{-2} when ± is minus.
x=-\frac{\sqrt{6}i}{4} x=\frac{\sqrt{6}i}{4}
The equation is now solved.